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Gradient estimates for solutions of the Lam
system with infinity coéicients

JiGuang Bab HaiGang Li and YanYan Li

Abstract

We establish upper bounds on the blow up rate of the gradadrgslutions
of the Lamé system with infinity cdiécients in dimension two as the distance
between the surfaces of discontinuity of the ffioients of the system tends to
zero.

1 Introduction

We consider the Lamé system in linear elasticity. et RY, d > 2, be a bounded
open set withC? boundary, and,; andD, be two disjoint strictly convex open sets in
Q with C?” boundaries, G< y < 1, which aree-distance apart and far away fraie.
More precisely,

D;,D, c Q, the principle curvatures @D, 9D, > kg > 0,

¢ = dist(Dy, Dy) > 0, dist(D; U Dy, dQ) > k1 > O, (1.1)

whereky, k1 are constants independenteof
Denote _
Q =0\ D; U Do.

We assume tha® and D; U D, are occupied by two élierent homogeneous and
isotropic materials with dierent Lamé constantd,(u) and @1,u1). Then the elas-
ticity tensors for the inclusions and the background can bien, respectively, ag*
andC®, with

Cl = 4166w + a(SikSji + 65,

and
Cﬁ“ = A6ij0u +:u(6ik5j| + 5il6jk),

wherei, j, k|1 =1,2,---,d andg;; is the Kronecker symbobi; = 0 fori # j, 6; = 1
fori = j.
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T : , .
Letu = (ul, u?, - - - ,ud) . Q — RY denote the displacement field. For a given
vector-valued functiop, we consider the following Dirichlet problem

(1.2)

V . ((X?)CO +XD1UD2C1) e(u)) = O, in Q,
u=¢, onoQ,

whereyp is the characteristic function @,

e(u) := %(Vu + (Vu)T)

is the strain tensor.
We assume that the standard ellipticity condition holdg[IoZ), that is,

u>0, da+2u>0; w1 >0, dag+2u; > 0.

Fore € HY(Q; RY), itis well known that there exists a unique solutioa H(Q; RY)
of the Dirichlet problem[(1]2), which is also the minimizditioe energy functional

30 = 5 [ (6 + xowo,C) . )

on
HL(Q;RY) = { ue HY(Q;RY) | u—¢ e H3(Q; R }

BabuSka, Andersson, Smith, and Levin|[10] computatigreatialyzed the damage
and fracture in fiber composite materials where the Laméesy$s used. They ob-
served numerically that the size of the strain terefaj remains bounded when the
distancee tends to zero. Stimulated by this, there have been many vaorike anal-
ogous gquestion for the scalar equation

(1.3)

V. (ak(x)Vuk) =0 inQ,
U =¢ onoQ,

whereg is given, and

ke (O, OO) in D, U Do,
) = {1 in Q.

For touching disk®; and D, in dimensiond = 2, Bonnetier and Vogelius [15]
proved thatVu,| remains bounded. The bound depends on the vallke lafand Vo-
gelius [28] extended the result to general divergence faroomsd order elliptic equa-
tions with piecewise smooth cfiients in all dimensions, and they proved that|
remains bounded as— 0. They also established strongeindependentC** esti-
mates for solutions in the closure of each of the regidpnd, andQ. This extension
covers domain®; and D, of arbitrary smooth shapes. Li and Nirenberg extended
in [27] the results in[][28] to general divergence form secordkr elliptic systems in-
cluding systems of elasticity. This in particular answaereithe dfirmative the question



naturally led to by the above mentioned numerical indicaiio[10] for the bounded-
ness of the strain tensor astends to 0. For higher derivative estimates, we draw
attention of readers to the open problem on page 894 of [27].

The estimates in [27] and [28] depend on the ellipticity & todficients. If ellip-
ticity constants are allowed to deteriorate, the situasorery diferent. It was shown
in various papers, see for example Budiansky and Cafrigrddd Markenscth [31],
that whenk = ~ in (1.3) theL*-norm of |Vu,,| generally becomes unboundedeas
tends to 0. The rate at which thé&-norm of the gradient of a special solution blows
up was shown in[17] to be Y2 in dimensiond = 2. Ammari, Kang and Lim[9] and
Ammari, Kang, Lee, Lee and Lini [7] proved that whBr and D, are disks inR?,
and wherk = oo in (I.3), the blow up rate dVu.| is e /2. This result was extended
by Yun [36,[37] and Bao, Li and Yiri [11] to strictly convéy, andD, in R?. In di-
mensiond = 3 andd > 4, the blow up rate ofVu,| turns out to bed| In€])~* ande™!
respectively; see [11]. The results were extended to nmdtissions in[[12]. Further,
more detailed, characterizations of the singular behasidfu,, have been obtained
by Ammari, Ciraolo, Kang, Lee and Yuhl/[3], Ammari, Kang, L&é&n and Zribi [8],
Bonnetier and Triki[[13| 14], Kang, Lim and Yun [21,122]. Falated works, see
[4,5,[14) 16/ 18, 19, 23, 24, P5,126,/129) B0, [32,[34, 35] anddfexences therein.

In this paper we obtain gradient estimates for the Laméegystith infinity coef-
ficients in dimensiom = 2. In a subsequent paper we treat higher dimensional cases
d>3.

The linear space of rigid displacementsifis

p o= {w e CYR%RY) | Vg + (Vy)T =0 }

or equivalently([33],

v span{ ot = (é) V= (2) V= (—Xil) }

If £ € HY(D;R?), e(¢) = 0in D, andD c R? is a connected open set, theis a
linear combination ofy“} in D.

For fixedA andy satisfyingu > 0 anda +u > 0, denoteu,, ,, the solution of[(1.2).
Then, as proved in the Appendix,

Upy,y — UINHY(Q;R?) as mirfuy, A1 + pg} — oo. (1.4)

whereu is aH(Q; R?) solution of

Lyu=V- (Coe(u)) =0, inQ,

ul, =ul_, ondD; U dD,,

e(u) = 0, in Dy U Dy, (1.5)
0 O _ — P —

o, 32| ¥ =0, v=123i=12

u=o, on oL,

where
ou

= (Co%(u)) i = A(V - u) i+ p(Vu+ (Vu)") A,

Ovoly
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andn is the unit outer normal db;, i = 1, 2.

Here and throughout this paper the subsc#iphdicates the limit from outside
and inside the domain, respectively. The existence, unigggeand regularity of weak
solutions to[(1.6) are proved in the Appendix. In particutae H! weak solution to
(LB) is inCYQ) N CXD; U Dy).

The convergencé (1.4) in the case— o while A; remains bounded was estab-
lished in [6]. Our proof of (1K) in the Appendix isftierent and is an extension to
systems of that ir [11].

The solution of [(15) is also the unique function which has lbast energy in
appropriate functional spaces, characterized by

loo[U] = minTs[V],
where 1
o[V 1= 5 fﬁ (C%e(v), e(v)) dx

and
A= {u € HY(Q;R?) |e(u) =0 inDy U Dz}.

A calculation gives
i i 1 2 -
(Laul) = pAU + (A + ) [D Ut + Dy ?], =12 (1.6)

SinceD; and D, are two strictly convex subdomains ©f there exist two points
P; € D1 andP, € 9D, such that

diSt(Pl, Pg) = dlSt(aDl,aDg) = E. (17)

We useP; P, to denote the line segment connectigandP;.
The main result in this paper is as follows. Assume that foneé, > 0,

1
do < p, A+u<—. (1.8)
o)
Theorem 1.1.Assume tha®, D1, D, € are defined ir(LI)with d = 2, 4 andy satisfy
(L.8), andy € C7(6Q; R?) for somed < y < 1. Let ue HY(Q; R?) N CHQ; R?) be a
solution to(1.B). Then for0 < € < 1, we have
C —

. ——lpllcrroar?), X€Q,

Cllellcir @ao;r2), X e Dy U Da.
where C is a universal constant. In particular,

VUl < Ce Y2llgllcrr @aza)- (1.10)



Note that throughout the paper, unless otherwise st@eld#notes some constant,
whose value may vary from line to line, depending only@rky, y, 8o, [|0D1llc2»,
l0D5]|c2, 1|0Q|c2 and the Lebesgue measuret@fand is in particular independent of
e. Also, we call a constant having such dependence a univayeatant.

Since the blow up rate ¢Vu,,| for solutions of[(1.B) whek = ~ is known to reach
the magnitude/2?, estimate[(1.10) is expected to be optimal. This is also cupg
by the numerical indication in [20].

The paper is organized as follows. In Section 2, we first oioe the setup of
the proof of Theoreri 1l1. Then we state a proposition, Pitipo$.1, containing
key estimates, and deduce Theoieni 1.1 from the proposltid®dections 3 and 4, we
prove Proposition 2]1. In Section 5, we prove Theofem 5.Xkkiextends Theorem
[1.1 in two aspects. One is that the strict convexity assummngD, anddD, can be
replaced by a weaker relative strict convexity assumpfldr other is an upper bound
of the gradient when the flatness order near the closestyloétiveer®D, andoD; is
m > 2 instead ofm = 2 for the strictly convexX)D; anddD,. In the Appendix, we give
a variational characterization of solutions of the Lam&tegn with infinity coicients
and prove the previously mentioned convergence rdsult. (1.4

2 Outline of the proof of Theorem[1.1

The proof of Theorer 111 makes use of the following decomijmwsiBy the third line
of (L.5),u is a linear combination ofiy*} in D; andD,, respectively. Sinc&, & = 0

in Q and¢ = 0 ondQ imply thaté = 0 in Q, we decompose the solution 6f{IL.5), in
the spire of[[11], as follows:

3 —

2. Clye, in Dy,
a=1

3 —

u=4 > Cy“, in Dy, (2.1)

a=1

3 3 —_

2Cvi+ 2 Covg +vs, InQ,

a=1

a=1
wherev® € CY(Q;R?) N C2(Q;R?), a = 1,2,3,i = 1,2, satisfy

L,V=0, inQ,
v =y, onoD;, (2.2)
v =0, onoD; U oQ, | # i,

vs € C1(Q; R2) N C2(Q; R?) satisfies

Ly,v3=0, in Q,
v3 =0, onoD4 U dDs, (23)
V3 = o, onoQ,;

and the constan{€'} are uniquely determined hy
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By the decompositioni (2.1), we write
2 2 2 N
Vu= Y1 (CI-CHVY + > CHVV + VM) + ) CVB+ Vv, inQ.  (24)
a=1 a=1 i=1

Theoreni_1.ll can be deduced from the following proposition.

Proposition 2.1. Under the hypotheses of Theorlem 1.1 and a normaliz#if sq) =
1, we have, foO < € < 1,

9V + Vel < @ =1,2.3; (2.6)
V() < ¢ =12 xeO: 2.7)

e + dist(x, P1P)’
€+ diSt(X, Pl Pz) i ~

IVV*(X)| < C — 2 i=12 XxeQ: 2.8

) e + disf(x, P1P,) 28)
and

IC1<C, i=12 a=123; (2.9)

ICy —Cll< CVe, a=12 (2.10)

Proof of Theorerh_1]1 by using Proposition]2 Glearly, we only need to prove the the-
orem under the normalizatiqipllcy(aq) = 1.

Since
0 1 . .
Vu:C?(_l 0) inD;, =12

the second estimate in (1.9) follows easily fram [2.9).
By (2.4) and Proposition 2.1, we have, fom Q,

C
Ve + dist(x, P1P,)

2 2
Vup)l < > [Cr = G| [Wve (] +C Y [Wi(¥)] + C <
=1 i=1
Theoreni 1.l follows. g

To complete this section, we recall some properties of timsaeC. For the
isotropic elastic material, let

C:=(Ciju) = (/15ij5k| +,u(5ik6j| + 6i|6,-k)), >0, di+2u>0.
The component§;jy satisfy the following symmetric condition:
Cijw = Cuij = Cuji, 1 .klI=12---,d. (2.11)
We will use the following notations:

d d
(CA)ij=ZCijk|Akl, and (A,B)EA:B:ZA”-B”,

ki=1 ij=1



for every pair ofd x d matricesA = (A;;), B = (B;;). Clearly
(CA,B) = (A,CB).
If Ais symmetric, then, by the symmetry conditidn (2.11), weehthat
(CA,A) = Ciju AuAij = LA A + 2u AAyj.

ThusC satisfies the following ellipticity condition: For eved/x d real symmetric
matrix A = (Ajj),

min{2u, dA + 2u}|A? < (CA, A) < max{2u, dA + 2u}|AP, (2.12)
where|A? = %Aﬁ

3 Estimates ofVv{, Vv§ and Vvs

Before proceeding to prove Propositlon|2.1, we first fix notet. By a translation and
rotation of the coordinates if necessary, we may assumeutitbss of generality that
the pointsP; andP; in (I.7) satisfy

Plz(o,g)eanl, and Pzz(o,—g)eaDz.

Fix a small universal constaiR, such that the portions @D; nearP; can be repre-
sented respectively by

Xo = % +hi(x), and ;= —g +ho(xt), for [xg < 2R
Moreover, by the assumptions 6D;, h; satisfies

= +hy(x) > —g +hy(x), for x| < 2R,

2
h,(0) = hy(0) = h;(0) = hy(0) = O, (3.1)
h;(0)> ko >0, hy(0)< -« <0, (3.2)
and
INgllc2yq-2r 2r) + IIN2llc2y(-2r2r) < C. (3.3)

ForO<r < 2R, denote

Q= {x eR?| - % + ho(X1) < % < % +ha(x), x| < f}.

The top and bottom boundariesQf are
+ 2 €
I = {xeR | %, = > + hi(x), |x] < r},

and €
I‘r‘ = {x € R? | Xo = —5 + hz(Xl), X1 < r}-

Herex = (X, Xo).



3.1 Estimatesofvsandvf +Vv5,a=1,2,3

Lemma 3.1.
||V3|||_eo(ﬁ) + ||VV3|||_oe(§) <C

IV} + VBl + IVV] + VWlle@ < C. @ =123
Proof. As mentioned before, we may assume without loss of gengtiadit||pllcy (so) =

1. Extendingp to ® € C7(Q) satisfying®(x) = 0 for all dist(x, dQ) > /2. In par-
ticular,® = 0 nearD; U D,, and

f~|V®|2dxs Cliellcrraa) = C.
Q

Then, in view of [2.38),

hdwyzéuﬁﬁﬂdwxdw»dxsIA@]SC.

Q

By the first Korn’s inequality (see, e.g. theorem 2.10n [3&jd (2.12),

IV(vs = D)IIE, g < 2le(vs = DI,

C (||e(v3)||ﬁ2@ + Ile(q’)“fz@)

C (lo[V3] + [ ®])
C.

IA

IA A

It follows that
||VV3|||_2(5) <C

Consequently,
||V3|||_2(ﬁ) < C||VV3|||_2(§) <C.

Note that the constai@ above is independent ef By the interior estimates and the
boundary estimates for elliptic systems (see Agmon, Dsugtid Nirenberg [1] and
[2]), we have

HVV?’”L""@\QR/z) <C.

We apply theorem 1.1 in [26] ta; and obtain
||VV3||L°°(QR/2) < C.

Since =~
L+ -y7) =0, InQ,
V(]l./_i_vg_wazo, OnaD]_UaDZs
VW -yt = g, onoq,

the above arguments yield, wigh= —y*,

Vv + V. < C @=123. (3.4)

~ <
@ ~

Lemma 3.1 follows from the above. ]



3.2 Estimates o', i,a =1,2

To estimates?, i, « = 1, 2, we introduce a scalar functiane C?(R?), such that'= 1

ondD;, u=00ndD, U 8Q,

X2 — ha(Xq) + 5

JX = 5 In Q >
) € + hy(x1) — ha(x1) R
and
lullczez\ag) < C.
A calculation gives
_ Clxq —
Oy, U(X)| < , 0 UX)] < ———, Xe Qp,
| X1 ( )| + |X1|2 | X2 ( )l + |X1|2 R
_ |X1| _
[Oxax U(X)| < prioaed 1051, U(X)| < et PR OxeU(X) =0,  X€Qp.

Define _
U=(@o)y, ®=00", inQ
thenv? = ¢ ondQ. Similarly, we can define

U =(u0), B=0Ou' ingQ

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

whereu is a scalar function ii€?(R?) satisfyingu = 1 ondD,, u = 0 ondD; U 6,

=X + hy(X1) + 5

U = ) — el

X € Qr,

and
lullc2rovar) < C.

By (1.6), (3.7) and(318),
L0 0) € s 4

, i,CY:1,2, X € Qr.
e+ X (€+ x[?)?

For|z| < R, we always usé to denote

€ + hy(z1) — ho(z1)
> )

0= (5(21) =

Clearly,
1
cle+ zl?) < 8(z2) < Cle + 2.

For|z| < R/2,s< R/2, let

Qy(z1) = {(Xl, X2) | - % +hp(X1) < X% < % +hy(X1), X1 =2zl < S}-

We denote
w =V -ut, Lba=12

In order to provel(217), it diices to prove the following proposition.

9
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Proposition 3.2. Assume the above, lgte CX(Q; Rz)mcl(a; R?) be the weak solution
of (2.2) Then, forja =1,2,

f.IVW?Ides C, (3.18)
Q
C 2 2 , < ,
Os(21) Clal4, Ve<lzal < R
and "
C€+ X1 , X S ,
T < 1 <o Pl Ve (3.20)
i’ Ve<|x|< R
Corollary 3.3. Fori,a =1,2,
C —
Vv (X)| < : , XeQ. (3.21)
€ + dist(x, P1P,)
Proof of Corollary(3.8. A consequence of (3.18) is
2 12 2
f~ v dx < zf~ (7@ "+ [vwe)ax<
Q\Qr/2 Q\Qry2
With this we can apply classical elliptic estimates to aftai
IVl e@an < C  a=12 (3.22)
Under assumptior (1.1),
1 T —
E(e + [x1[%) < dist(x, P1P;) < C(e + |xa]?).
Estimate[(3.21) iy follows from (3.20) and the fact that
VU'(X)| < —, i :
[Vir(x)| < oL Qr
i

Proof of Proposition 3J2.We only prove it fori = @ = 1, since the same proof applies
to the other cases. For simplicity, denate= w}. We divide into three steps.
STEP 1.Proof of [3.18).

By (3.17), B
{LA’HW =Lty 0 (3.23)
w=0, onoQ.
Multiplying the equation in[(3.23) bw and integrating by parts, we have
ﬁ (COew), e(w)) dx = ﬁ w(Ly,07) dx (3.24)
Q Q

10



By the mean value theorem, there exists (R/2, 2R/3) such that

f WidXx = g f lwjdx

[X1|=ro, R/2<|x1]<2R/3,
—€/2+ha(x1)<x2<€/2+h1(x1) —€/2+hy(x1)<Xo<€e/2+hy(X1)

IA

C [Vw|d X

Qor/3\QR)2

c( fﬁ |VW|2dx)l/2. (3.25)

It follows from (2.12), [3.24) and the first Korn’s inequalihat

f~ IVWi? dx
Q

< 2f~|e(w)|2dx
Q

fg; W(-[Jua%) d)(i + C’ fﬁ\gro W(_[:/wlj%) d)(i

o

f W(LM,G%) d><i +C Iwld x
Q

0 Q\Q,

1/2
< CU wa, . U d{ +‘ f w9, U d>ﬂ+c( ﬁ |Vw|2dx) . (3.26)
Qy Qg 0\,

First,

f wg,  Udx= — f Oy, WA, T dx+ f (05, ) WD dx,
Qro Qr

0

IA

<C

<C

[xal=ro,
—€/2+hy(X1)<x2<e/2+h1(X1)

=1 +11I.

Then, by [3.7),

1/2 1/2 1/2
N < C( f |8X1LT|2dx) ( ﬁ |VW|2dx) < C( f~ |VW|2dx) :
Qr Q Q

0

By (3.25), we have

1/2
i< C f W dx < C(f~ |Vw|2dx) .
Q

[X11=ro,
—€/2+h(X1)<xp<€/2+h1(X1)

1/2
’ f wg, . U d>4 < C( ﬁ |VW|2dx) . (3.27)
Q Q

0

Hence

11



Similarly, usingw = 0 ongD; U D,

f Oy, W, U d{
Q

° 1/2 1/2
C( |axla|2dx) ( ﬁ |VW|2dx)
Q, Q
1/2
c( f~ |VW|2dx) .
Q

Therefore, combining this estimate with (3.27) aind (B.26),

1/2
f~|VW|2dXS C(fJVWFdx) ,
Q Q
which implies [3.IB).

STEP 2.Proof of (3.19).

ForO0< t < s< R, lety be a smooth function satisfyingx;) = 1if |[x; — z|] < t,
n(x) = 0if [xy -zl >50<nx) <1ift<|x—zl< s andy(x) < &
Multiplying the equation in[{3.23) bwn? and integrating by parts lead to

wWa, U d{ =

@

IA

IA

[ (e ewax=- [ AL, ddx (3.28)
Qs(z1)

Qs(zl)

Using the first Korn’s inequality and some standard argus)em have

Qs(z1)

f (COe(w), e(wrd))dx > = f Vwn)dx—C f Wlvdx  (3.29)
Qs(z1) C Qs(z1)

and

f (wnz)zd,,lalid{s Lz f Wi%dX + (S — t)2 f £, 0] dx
Os(z1) (s—1)? Jaya) Ou(z1)

It follows that

f IVwi2dx < sz |W|2dX+(S—t)2f
(@) (5- 9% Josa ay(

S!

£, 0 dx  (3.30)
z)

Case 1. Forye < |z| < R
Note that for O< s < 22!, we have

5+hy(x1)
ﬁ w2dx = f f IW(X1, X2)|°d %0 X
Qs(z1) [X1-z1|<s J=5+ha(x1)

5 5+h1(x1) 2
< f (e + ha(x) — ha(%0)) B W0 ) dodl,
xi-zl<'s —5+h2(x1)
< Clg/|* fA IVwi2d x, (3.31)
Qs(zl)

12



By (3.13), we have

2 Cs 2|z4]
L0 dx< =—, O0<s<—. 3.32
fﬁs(zl) | b ll |z, |* 3 (3.32)
Denote
F(t) = ﬁ IVwi2dx
Qt(z1)
It follows from the above that
= Col 1|2 5 2|z
F(t) < F(s) + C(s—t) |4, YO<t<s< = (3.33)

whereC, is also a universal constant.
Lett; = 2Coi |zz% i = 1,2,---. Then

Colzl* _ 1
ta—t 2
Letk = [4C — |] Then by [3:3B) withs = t,; andt = t;, we have

C(ti+1 - ti)zti+1

_ 1
Ft) < ZF(ti+1) + Z

1~ .
< ZF(ti+1) +C(i + 1)|zf,
After k iterations, we have, using (3]18),

1kA k 1Il
(Z) F(tk+1)+C|zl|2§(Z) (I+1)< c( ) +Clzy? Z( ) (1+1)

2
C|21| .

F(ty)

IA

IA

This implies that

ﬁ IVwi?dx < Clz|?.
Qs(z1)
Case 2.For|z| < +/e.

For 0< t < s< /e, we still have[(3.30). Estimate(3131) becomes

ﬁ W?dx < Ce? fA IVwi2dx, 0<s< Ve (3.34)
s(z1) Qs(z1)
Estimate[(3.32) becomes
f L dx< 22 C|Z—§|S+ Cf, 0<s< Ve (3.35)
ﬁs(Zl) €

Estimate[(3.33) becomes, in view 6f (3.30),

F(t)<(C—O) F(s) + C(s— t)z( '%'2+§) VO<t<s< ve (3.36)
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Lett; = 2Cpie, i =1,2,---. Then
Co€ _ 1

ta—t 2

Letk = [4(:;\/;]. Then by [3:3b) witts = t.,; andt = t;, we have

— 1~ .
F(t) < ZF(ti+1) + Cid(e? + |z)?).

After k iterations, we have, using (3]18),

1

C

1 kA k 1 -1 1
(Z) F(tk+1)+C;(Z) 13(e? + |z%) < C(Z) +C(€% + |zl

C(€® + |z]?).

%

F(ty)

IA

IA

This implies that
ﬁ IVWi2dx < C(€® + |z]?).

Qs(z1)
STEP 3.Proof of [3.20).
Making a change of variables

{Xl -2 = oY1, (3.37)

Xo = 0Y>,

thenQ;(z;) becomes,, where

—£+}h(5 +27) < <=
> 523/1 1) < Y2 >

Q= {y e R? + %hl(éyl +21), |yl < r}, forr <1,

and the boundarids; become

~ 1/€
Yo = hi(yr) = 5 (§ +hy(oys + 21)), Iyl <1,

and
1

y2 = ha(yy) := 5 (-% +hy(oyr + 21))’ Iyal < 1.

Then 1
h(0) - hx(0) := 5 (€ + hy(z1) — ha(z1)) = 2,

and by [(3.11) and_(312),
IR, (0)] + 1,(0) < Clzal,  [R/(0)] + |y ()] < Co.

SinceRis small,||hyllcrx 1.1 andllfallcry 1.1y are small and Q; is essentially a unit
square as far as applications of Sobolev embedding the@eddassicdlP estimates
for elliptic systems are concerned. Let

Ui(Ye Y2) == Up(Xe, %), Wi(YL Y2) i= Wi(Xe, X2), Y€ Qf, (3.38)

14



then by [(3.2B),
LW =-L,U;,  yeQ. (3.39)

where
| £1,U3] = 62| £,03] -

SinceW; = 0 on the top and bottom boundaries@f, we have, using Poincaré in-
equality, that
1 1
||W1||H1(Q’1) <C ||VW1||L2(Q/1) )

By W2P estimates for elliptic systems (séé [2]) and Sobolev emingdtieorems, we
have, withp = 3,

||VW11||LN(Q/ )_ C”Wl”sz(Q < C(HVWll”LZ(Q'l) + ||‘£/L/‘U5:|I-.||L°°(Q/l))'

It follows that

C 2
||VM||L“(95 (@) — g (||VW1||L2(95(21)) +0 ||'£/1,u ||L“(§5(Zl))) : (340)
Case lForVe< |z < R
By (3.19),
B |Vvvi|2dxg Clz|?.
Qs(z1)
By (3.13),
2 il 2( C c in O
0 |.£,Lﬂu1| <é W + m Clle n Q(;(Zl).
We deduce from(3.40) that
Clz C € €
[VWi(z2, %o)| = ' il & V = = + hy(z1) < % < = + hy(z0).
|z |’ 2 2
Case 2For|z| < +e.
By (3.19),
B |VW%|2 dx< C(€? + |z?).
Qs(z1)
By (3.13),
1 o
52 |£A,yl_ﬁ| < Cs? (E + £ +2|21|) < C(e + |za)), in Qs(zy).
We deduce from(3.40) that
C €+ |z € €
[VWi(ze, %)| = = (e+|z)) <C E' 1', Vo= 5+ ha(z) < X < 5 + hu(2).
Proposition 3.2 is established. O

15



3.3 Estimates of?,i = 1,2

Define .
= (XU, —x0)", and U= (xzu, —xlu) (3.41)

thenv? = B3 ondQ, i = 1, 2. Using [37),[(31) and(3.3), we obtain

C(e + Ix1])
VU - = .
Vaieo| < = P 1,2, xeQg, (3.42)
and —
V(x| < C, i=12 xeQ\Qn (3.43)

It follows from (3.41), [(1.6),[(3]7) and (3.8) that

| L2807 < 6+|X T =L2 X< (3.44)
We estimate the energy of, i = 1, 2.
Lemma 3.4.
f_|v?|2dx+ ﬁ vWfdx< C, i=12 (3.45)
Q Q
and
[Vl o < € 1=22 (3.46)

Proof. By (3.42) and[(3.43), we have

l[V] < 1[WF] < C||VE < C,

@)

and, by [(1.8) and(2.12) and the first Korn’s inequality,

IVl 2y < 907 = W)l oy + V0] 2y = V2|6’ = B)] o) + C
< C||e(v?)||L2(ﬁ) +C< Cl[V]+C< C

We know from the Poincaré inequality that

f~|vi3|2dxs Cf~|Vvi3|2dxg C.
Q Q

Note that the above constabtis independent of.
With (3.45), we can apply classical elliptic estimates, fgeand [Z], to obtain

(3.48). O

Denote

W=V -U, i=12
It is easy to see froni (3.42], (3143) aI@B.45) that

ﬁ vw* < C. (3.47)
Q
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Lemma 3.5. With§ = §(z) in (3.14) we have, for i 1, 2,

Cé?, ,
f wwdx< (O, Al Ve (3.48)
Qs(z2) Clal*, +Ve<l|al<R

Proof. The proof is similar to that of (3.19). We will only prove itfo= 1, since the
proof fori = 2 is the same. For simplicity, denate:= w?, then

{LMW I (3.49)

w=0, on oQ.
As in the proof of [(3.19), we have, instead bf (3.30),

f IVwi2dx < < 2f |W|2dx+(s—t)2f ILA#Uilzdx (3.50)
() (s-1? Jaya ()

Case l.V/e< |zl <R
We still have [3.311) for G< s < 22!, Instead of[(3.32), we have, using(3.44),

f £, dx < C—SZ (3.51)
Qs(z1) |z
Instead of[(3.33), we have
2
F(t) < ( s(,)l—ltl ) F(s)+C(s—t)2 5, Y0<t<s< % (3.52)

We define(t;}, k and iterate as in the proof df__@19) right below formule8®, to
obtain, using[(3.47),

Flty) < (—) 2|Zl|) + Clzyf* Z( )Is Claul*.

This implies that
f IVw?dx < Clzy|*.
a5(21)
Case 2./z| < +e.
Estimate[(3.34) remains the same. Estimate {3.35) becomes
C
f £, 58] dx < =% 0<s< Ve (3.53)
as(zl) €
Estimate[(3.36) becomes
C C(s-1t)?
FH < (—06) F9+ 87U yocics< Ve (3.54)
€

Define({t;}, k and iterate as in the proof df (3119), right below form{l86), to obtain
- 1 k . k 1 1-1
F(t) < (Z) F (ki) + C; (Z) le? < Cé?.
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This implies that
fA IVwi?dx < Cé2

Qs(z1)
i
Lemma 3.6.
VWl o < C i=12 (3.55)
Consequently,
Cle + [x1])
|VV|3(X)| < Tlxﬂz, =12, X € Q. (356)
Proof. The proof is the same as that 6f (3.20). In CaseVt, < |z| < R, we use
estimates
2
fA [Vw3|"dx < Clzl*,
Qs(z1)
and

52 I‘E/LNG?I < C|21|2.

In Case 2|z| < +/e. we use

fA [vwd| dx < C,

Q5(z1)

and
6?|L£,,U3) < Ce.

4  Estimates ofC{ and CJ

In this section, we first prove th&ly andC are uniformly bounded with respectp
and then estimate theftérenceC{ — C5.

4.1 Boundedness of,i=12a=123
Lemma 4.1. Let C* be defined irfZ.1). Then
IC'| < C, i=12; =123

Proof. We only need to prove it far= 1, since the proof for = 2 is the same. Lai,
be the solution of[(115). By Theordm 6.5 and Theorem 6.6 irAjygendix,

ol 1= 5 [ (€0, aw) < 1[0] < C

Q

where® is the one in the proof of Lemnia 3.1.
It follows that

”UeHHl(ﬁ) < C”e(us)HLZ(ﬁ) < Cloo[us] <C

18



By the trace embedding theorem,

lUellL2oppBR) < C.

OnaDy,

3
Ue = Z Cly“.

a=1

If C, := (C{,C%,C3) = 0, there is nothing to prove. Otherwise

3
>.Cive

a=1

C >G4

b

L2(0D1\BRr)

whereC" = 1 and|C1| 1. Itis easy to see that

3
.G
a=1

Indeed, if not, along a subsequences 0,C? — C¢, and

3
_aa
1
=1

=

Ol

L2(4D1\BR)

=0,
L2(0D;\BRr)

wheredD; is the limit of 9D, ase — 0 and|51| = 1. This implieszf;=1 5‘1’1//"

9D: \ Br. But {¢a| -

4.2 Estimates ofC{ - C5|,a =1,2
In the rest of this section, we prove

Proposition 4.2. Let C* be defined iff2.1). Then
ICo—C3l< Cve, a=12
By the fourth line of [1.b),

vy | 5

3

; fDJ vols

Denote

ai“_'B — _f a_v'a
) ap; Ovol+

oD
j=12; B=1,223

P, blj?:fD%

3]6V0+

19

.¢,ﬁ+f AL
ap; Mol+

WA, 0,j=12,a,8=123.

(4.2)

(4.2)

=0on
} is easily seen to be linear independent, we must Bave 0.
This is a contradiction. Lemnia 4.1 foe 1 follows from (4.1) and[(4]2).

O

(4.3)



Integrating by parts ove® and using[{ZJ2), we have
' = [ (etreu)ax B =- [ (otva). ) dx
Then [4.B) can be written as

3 3
D Cialf+ > Crai b =0,
! o B=1,23 (4.4)
D Cial+ ) Cias -t =0,
a=1 a=1

For simplicity, we uses;; to denote the X 3 matrix (a%ﬁ). To estimatgC{ — C3],
a = 1,2, we only need to use the first three equation& in (4.4):

a11Cy + a1C, = by,

where
Cl = (Cl’ C%’ Ci)T? C2 = (Cl’ Cg’ Cg)T? bl = (bl? bi’ bi)T
We write the equation as

a11(C1 — Cp) = p = by — (a1 + a21)Co. (4.5)
Namely,
an ajp ap)(Cr-G)
Y
a1(C1 - Cp) = |afy aff aff||Ci-Cf|= [pj. (4.6)
P

3 a a)\cl-C3
We will show thata, is positive definite, which we assume for the time being. By
Cramer’s rule, we see fron (4.6),

1 12 413 11 A1 413
P a1 & a; P oap
1 1
cl_cl= 2 22 g3 C2_C2 = 21 2 23|
172 = Getay, P ap a; 172 = Getay, an Pp°oag
3 .32 .33 31 3 433
P™ & an a; P oaj
Therefore
22 423 12 413 12 413
L L 1 L ay ) a7 ap 5 a7 an
Ci-Cz= detag; P 32 .33 -P 32 433 P 2 23] (@.7)
ap an a7 A a7 an
and
21 423 11 413 11 413
X X 1 L a; ) ap a1 an
Ci-Cz= deta, P 31 433 P 31 433 - 2 2| (4.8)
11
a; an a; an a; an

In order to prove Propositidn 4.2, we first study the rightdhaide of [4.6) and have
the following estimates.
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Lemma 4.3.

laf +af|< C. @.p=123;

f|<c p=12

Consequently,
lpl < C.

3.

Proof. Forg = 1,2, 3, using [3.211) and (3.45),

ﬁ|vﬁ|dng |va;|clx+f~ V| dx< C.
Q Qg2 Q\Qr2

Fora,B = 1,2,3, by Lemma3ll and (4.10), we have

i ] = | [ (2% + ). b))

IA

C.

IA

CIv0 + )y [ 1750

Similarly, it follows from Lemmd3.1 and (4.10) that

ba = ] fﬁ(coe(\/i),e(w,))d{ < ClIVVsll. ) fﬁ vV|dx< C. =123

Lemmd4.3B follows immediately, in view of Lemrha#.1.

Lemma 4.4. a;, is positive definite, and

and

! < detaj; <
Ce — 1=

Proof. STEP 1.Proof of (4.11) and (4.12).
For any¢ = (£W, £@, £®)T £ 0,

1/4’

a=172;

Eran = [ (Ce(e).e(ev))) ax>

21

n O

1

C

fﬁ ’e(f(“)v‘{)‘zdx> 0.

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)



In the last inequality we have used the fact m@‘“)v‘f) is not identically zero. Indeed
if e(f(‘”v‘l*) = 0, thené@ve = ay! + by? + ¢y in Q for some constanta, b and
c. On the other hand@v? = 0 on dDy, and¢:1|aD ¢2|3D and 1//3|3D are clearly

independent. This implies that= b = ¢ = 0. Thus ordD;, f(“)v" 0, violating the
linear independence aﬂf1|aD w2|aD andlpaL9D We have proved that; is positive
definite.

By (1.8), (2.12) and (2]7),

a‘l"f:f(coe(v") e(v‘*))dx< cf|w*| dx % a=12
€
With (3.17), we have, by (3.18),
1 2
il = [ (e(v) o) dxz g [ [e(v)f ox
1 2 2
> 5 [ Je@)f dx-c [ fe(wd) ax
> 5 [ e@)f ex-c
Since : 1
e(@)|" = Z10.07. (4.16)
we have
2 1 1 dx
Jole@fax = g | 'axzu'dewLR (€ + M) — B2
> lf dx
~ C o (e+ PR = xf
Thus 1
ag > oV
Similarly, we have L
ay; > cve

Estimate[(4.1]1) is proved.

By Lemmd3.4,
o= [ (%e().e(@))ax=

By a version of the second Korn’s inequality,
ad> =
C Qr\QR/2

Estimate[(4.12) is proved.
STEP 2.Proof of [4.13).

le(V3) Pdx > é f IVV3Pdx >

1
QR\QR2 C
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Notice that

al2 = g2t = fg (COe(v), e0?)) dx = ﬁ (o, i2)dx

Q

With (3.17), we have

[ (v vg)ax V(@ + ), V (@ + w2)) dx
R/2

LR/Z
f (covay, Vi dx+f (Covi, vwz) dx
Q

R/2 Qry2

+ f (COVE, vwi) dx+ f (COVwi, vug) dx
Qry2 Qry2
By the definitionuf = (u, 0)" andu? = (O, u)", we have

—1_ axla aqu —2 O O
Vul_( 0 L and Vuj = el Oy

By (3.18),

and
) 1/2 ) 1/2 C
f (covai,wé)dx{gc(f || dx) (f |vw?| dx) <
QR/Z QFl/2 QR/2
Similarly,

C
CoviZ, vwt dx{ < —.
J, (v < o

On the other hand,

(COVG%, VG%) — ((/l + Z/J)éxlu /Jang) : ( O_ 0_) _ (/l +/J)(9Xllja)(2l1

Hox,u Aoy ul “\ox,u dyu

Thus,

Substituting these estimates above info (4.17), and uBiZgd), we have

lat? = |afy] = ’ f (COVvl,sz) ><1

The proof of [4.1B) is finished.
STEP 3.Proof of (4.14).

23

1/2 1/2
f (COV\IV%,VW%)dX{SC( f |v\N}|2dx) ( f |VW§|2dx) <C,
Q2 Qry2 Qr2

C
COVVE, W2 dx{ +C< —.
fQR/z( 1 1) el/4

(4.17)

(4.18)

(4.19)

(4.20)

_ Xq|d X
COVIt, Vi dx{ < Cf 10 Ull0y, UldX < Cf _baldx < ClInel.
LR/Z ( ! 1) Qry2 Xl ° Qry2 (6 + |X1|2)2



als =aj = L(Coe(v‘l’),e(vg))dx: fﬁ(COVV‘l’,va)dx, a=12
Similarly to the above, using (3.118) and (3.47), we havegfer1,

all = fg (oW, 73) dx+ O(1)
R/2

- f (COvay, Vi5) dx+ f (COVa, vw;) dx
Qr2

Qr2

¢ [ (covavud)axs [ (Covud vud)dx+ O)
Qry2 Qry2

fQ (Cova, Vi) dx+ fg (COVE, vwi) dx+ f (COvay, vwg) dx+ O(1)
R/2 R/2

Qry2

S+ 1+ 1+ O(1).

By the definition ofu? = (x,u, —x,u)", we have

ViE = X0k U U+ Xo0y,U
1= _J_ Xlaxla _Xla)(zlj )

Then

0 — —3 _ (/1+2I1)8X1U Maxzu . Xzaxla U+ X26X2U
(cova Vi) ‘( 10T A0 \—lU= Xady U  —Xady Ul

= (/1 + Z/J)XZ (axla)z + /J X2 (aXZ lj)z - (/1 + ﬂ)xlaleaXZlI

Hence, by[(317),

fS;R/z (COVG%, VGE) dx{

Xal|Xal? f %l f X )
<C f ——— dx+ ——— dx+ ————dxX
( Qr/2 (E + |X1|2)2 Qry2 (E + |Xl|2)2 Qry2 (E + |X1|2)2
< C.

By (3.18) and[(3.42),

1/2 1/2
[ (c%ﬁf,w)d{gc( [ |vasl|2dx) ( [ |vW1|2dx) <c
Qg2 Qry2 Qry2

While, by (3.55),

f ((COVG},VWi)dx{ < cf V| dx< C.
Qry2

Qry2

Therefore
lasd < C.
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Similarly, using [(3.1B) and(3.47),

atd = fg (CO%3, V3) dx+ O(1)
R/2

- fg (COVE, Vi) dx+ f (COVE, vw3) dx
R/2

Qry2

N f (COVE, vug) dx+ f (COVW2, vwg) dx+ O(1)
Q2 Qry2

_ f (COVER, V&) dx+ f (COVER, Vwg) dx+ O(L).
Qry2

Qr2

By the definitionuZ anduZ, we have

0o—=2 o3\ _ [A0xU Ui, u _ XoOx, U U + X0y, U
(CoViE, viE) = (uaxla (1 +2u)30) " \~U— X0y 0 —Xady,U
= (A + 1) X0, Udy, U — 1 Xl(axll])2 -+ Zﬂ)xl(aXza)z-

Hence, using (3]7), we have

fg (COViE, ViS) dx
R/2

—-+20) [ x(0n0%dx+ 0

1 1
=—(1+2 X — dx + O(1
A2 | o 1(e+ ha() —Fo0w) e+ 3((0) hg(O))xi) 1+ o0
= O(2).
Therefore

laZ¥ < C.
Lemmad 4.4 is proved.
Proof of Propositio 412 By (4.7), Lemma 43 and Lemna 4.4,

1 1
1_ 1 122,33 _ 3.22.13
Ci-GC= detay, ((p apd;; — P allall) + O(m))-

Therefore
Ict-Cj| < Cve.

Similarly, using [(4.8),

-2

1
2.11,33 _ 3,11.23
paja;; — p allall) + O(—€1/4 )

- detall ((

Therefore
|C2-C| < Cve.

The proof is completed.
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Proof of Proposition 2J1 Estimates[(2]5) and_(2.6) have been proved in Lermmla 3.1;
estimate[(Z2]7) has been proved in Corollaryl 3.3; estiniai) (2as been proved in
Lemmal3.4 and Lemma_3.6; estimdte [2.9) has been proved imlaédnl; and es-
timate [2.10) has been proved in Proposition 4.2. The prédfroposition[Z.1L is
completed. |

5 More generalD; and D,

As mentioned in the introduction, the strict convexity amption ondD, anddD, can
be weakened. In fact, our proof of Theoreml 1.1 applies, witmommodification, to
more general situations.

In R?, under the same assumptions in the beginning of Sedtioneépefar the strict
convexity conditiongD; nearP; can be represented by the graphsxot 5 + hy(xy),
andx; = —5 + hx(xy), for x| < 2R. We assume thdt;, h, € C?([-2R, 2R]) and [3.1)
still holds. Instead of the convexity assumption, we asstirae

Aolxa|™ < hy(X) — ha(X1) < Aqlxq|™,  for [xq] < 2R, (5.1)
and
I ()l < Clxa™, W/ (x0)l < Clxd™2,  i=12 for |x]<2R, (5.2)

for somee—independent constantsO Ag < Ay, andm > 2. Defines = §(z) as

(3.14). Clearly,
%(e +122™) < 6(z1) < C(e +za™). (5.3)

Then

Theorem 5.1.Under the above assumptions withen®, let ue HY(Q; R?) mCl(E; R?)
be a solution taf1.5). Then for0 < € < 1, we have

1-1 ; DD
e m + dist(x, PP ~
, ( —12)||90||C1v7(8Q;R2), X € Q,
IVu(X)| < € + dist"(x, P1P5) (5.4)

Clielicrr @ar2), x € Dy UD,.
where C is a universal constant. In particular,
1_
IVUllLo(@) < Cem Higllcr@az)- (5.5)

In the following, we only list the main élierences. We defingby (3.5) as before.
A calculation gives

_ Clelm_l — C
|05, U(X)| < Pyt [0y, u(X)| < oy X € Qr, (5.6)
by (3.3), we have
_ Clx|™2 Xq| ™1 _
|(9X1X1U(X)| < % |ax1x2u( )| ( | |l)|( |m)2’ axzxZU(X) = O, Xe .Q.R. (57)

26



Defineu?, i, = 1,2 as in[(3.9) and (3.10). By (1.6). (5.6) and (5.7), we have

Clxq|™2 Clxg ™

L (X)) < ,
a3l €+ X™ (€ + [X™)?

i,a =1, 2, Xe QR. (58)

Instead of Proposition 2.1, we have

Proposition 5.2. Under the hypotheses of Theorlem 5.1 and a normaliz§gig sa) =
1, we have, foD < e < 1,

||VV3|||_oo(§) < C, (59)
IV + Wlleg < G @=123; (5.10)
IV (X)] < © hba=12 xeQ; (5.11)

€ + dist"(x, P1P,)’

Wpg < cEF At PP s e (5.12)
€ + dist"(x, P1P,)

and
Cl<C, i=12 a=123; (5.13)
ICZ —C3| < Cévm, a=1,2 (5.14)
Denote
W=V -, i=1,2 a=123

Then, instead of Proposition 3.2, we have

Proposition 5.3. Assume the above, lgte CX(Q; Rz)mcl(g; R?) be the weak solution
of 2.2) Then, forja =1,2,

ﬁleVi“lzdxs C, (5.15)
Q
C 2m-2 2m-2 , < ,
f [vw [ dx < (GZm_; 2P?), < Ve (5.16)
Qs(z1) Clz > % <lzz1 < R

and Em_1+|X1|m_:l m
C . Ixal < Ae,

|VM(X)| < { C ‘ % < |X1| <R

bal’
Proof. The proof of [5.I6) is the same as that[0f (3.18). We only listmain difer-
ences from STEP 2 and STEP 3 in the proof of Proposition 3.2.
STEP 2.Proof of (5.16).
Case 1. For{/e < |z| < R/2.
Note that for 0< s < 22!, we have

(5.17)

5+h1(x1)
f wdx < f (e + hy(x) — ho(x0))? f 19, W0, o) Pl
Qs(z1) X1—z1/< S _

5+ha(x1)

< Clz)®™ ﬁ ( )|VW|2dx, (5.18)
Qs(zn
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By (5.8), we have

2
2 Clxq|™2 Clxq ™1
f | £2,U5| dng ( X4 " X4 ") ax
Os(z1) Gy €+ 1Xa|™ (€ + [X™)

Clz1|™s Cs 2|z
< |21| 3 < > O<s<—| 1|.
|2, |21 T |z 3

(5.19)

As before, it follows from the above and (3130) that

Colza|™\* = , S 2|z
n ) F(s) + C(s-1t) Z e YO0<t<s< = (5.20)

F(t) < (
whereC, is also a universal constant.
Letti = 2Coi |z7/™, i =1,2,---. Then

Colz™ _ 1

-t 2

Letk = [ . Then by [5.2D) withs = t;,; andt = t;, we have

e
4Co|z ™1

C(ti+1 - ti)zti+1

_ 1
F(t) < ZF(ti+1) M

1~ : —
< ZF(ti+1) +C(i + Dizf™?,
After k iterations, we have, using(5]15),

(%)k F(tkra) + Clza/*™2 Zk: (%)H (I +1)

=1
C|21|2m_2.

F(ty)

IA

IA

This implies that
f IVwi2dx < Clzy*™2.

Qs(z1)

Case 2.For|z| < Ve.
For0<t < s< {/e, estimate[(5.18) becomes

fA w2dx < CezfA IVWdx, 0<s< Ve (5.21)
Qs(z1) Qs(z1)
Estimate[(5.199) becomes

Clx, ™2 Clx; ™1 2
f |‘£/Lllai|2dng ( X1 . | X1 __ dx
Os(22) O@) \€ + IXa|™ (€ + [Xq|™)

_Cs . C(|ze*™2 + £™2?)s
T € €l

Estimate[(5.20) becomes, in view 6f (3.30),

, for 0<s< e (5.22)

2 2m-2 m-2
F(t) < (E) F(s) + C(s— t)zs(% S, s

—_ ), VO0<t<s< Ve (5.23)

€3 €3
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Lett; = 2Cpie, i =1,2,---. Then

Co€ _ 1.
-t 2

Letk = [ L ] Then by [3.3B) withs = t;,; andt = t;, we have

40061_%
C U+ }" ] 3 _2m-2 2m-2
F(t) < 4F(t.+1)+C| (e + |z )

After k iterations, we have, using (5]15),

1 k . k 1 -1
(Z) F(tk+1) +C Z (Z) |3 (EZm—Z + |Zl|2m_2)
=1

1
1\caa 2m-2 2m-2 2m-2 2m-2
< C(Z) +C(e + |z4] )s C(e + |z )

F(t2)

IA

This implies that
ﬁ IVwidx < C (ezm‘z + |21|2W2).
Qs(z1)
STEP 3.Proof of [5.17).
Using a change of variables (3137), def@g h,, andh, as in the proof of Propo-
sition[3.2. Then by (512),

IR, (0)] + IP,(0) < Clzu™?,  |hy(0) + Iy (0)] < Colzi|™2.

SinceRis small,||hyllcrx 1.1 andllfallcry 1.1y are small and Q; is essentially a unit
square as far as applications of Sobolev embedding the@eddassicdlP estimates
for elliptic systems are concerned. By the same argumenttas iproof of Proposition
3.2, (3.40) still holds. We divide into two cases to proceed.

Case 1For {/e < |z1| < R/2.

By (5.16),
ﬁ |Vvvi|2dxg Clzy|*™2.
Qs(z1)
By (5.9), -
2 = 2 1 .~
0 |.£,1,,1U1| <9 (W + W) < C|Z;|_|m , in Q(;(Zl).
We deduce froni(3.40) that
Clz™t C € €
|VW}(21, X2)| = | ldl < zl’ v - > +ha(z1) < X < > + (z).

Case 2For|zy| < 2¥e.
By (5.16),

2
|vwiTdx < C(E™2 + 1™
Qs(z1)
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By 5.9),

(e+ |21|)rTFz + (e+ |21|)rTFl

6| Lol < C62( )g Cle+1z)™?, in Qs(z). (5.24)

€ €2
We deduce fron{(3.40) that
C, €™l 4 |zy™1t € €
[VWi(zi, )| = 3 (Gm L4 |21|Wl) < C%, v —§+h2(21) <X < §+h1(21)-
Proposition 5.8 is established. O
Defined?, i = 1,2 by (3.41). Using[(5]1)[{512) and(5.6), we have
Cle+x) .
=3 _
|VUi (X)| < m, =12, X € Qg, (525)
and —
V(Y| < C =12 xeQ\Q (5.26)
It follows from (1.6), (5.6) and(517) that
C
=3 v
| £2,0] < g (L2 xee (5.27)

Then Lemm& 314 still holds, while LemrhaB.5 and Lenima 3.6 tveco
Lemma 5.4. With¢ = 6(z) in (3.14) we have, for i 1, 2,

f vwef dx < ¥e (5.28)
0s(2) Clz | M, Ve<lal<R/2

Proof. The proof is very similar to that of Lemnia 8.5. By the same argut, we still
have [(3.5D) holds.

Case 1. Ve < |z1] < R/2.
We still have [(5.IB) for 6< s < 22!, Instead of[(5.19), we have, using(5.27),

Cs
ﬁ £, |dx_| = (5.29)
Qs(z2)

Instead of[(5.20), we have

ColzgI™

E(t)g( ) F(s) + C(s— t)2 V0<t<s<% (5.30)

We define{t;}, k and iterate as in the proof df (5]16), right below formll&2(@), to
obtain, usingl(3.47),

F(ty) < (—) F(%) + Clzf? Zk:(%)ll < Clz/™

=1
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This implies that
fA IVWi2dx < Clzy*™.

Qs(z1)

Case 2./z| < {e.
Estimate[(5.2]1) remains the same. Estimate {5.22) becomes

f £, 8] dx < €S o<s< e (5.31)
5s(zl) €

Estimate[(5.23) becomes

. 2/\ _1\2
E(®) < (%) F9+ 87 yoci<s< ¥R (5.32)
- €

Define{t;}, k and iterate as in the proof df (3]19), right below forml86, to obtain

N 0k Kyt
F(ty) < (Z) F(ter1) + CZ(Z) le? < Cé.
=1

This implies that
f IVwi2dx < Cé?.

Qs5(z1)
O
It is not difficult to obtain
Lemma 5.5.
VWil < € T=12 (5.33)
Consequently,
C(e + |x41]) )
WX < ——2 =12, Or. 5.34
IV (X)] < AT X € Qr (5.34)

The last main dference is the computation ef{, o = 1,2. In fact, By [1.B),
2.12), [27) and(5.15),

al = f~ (Coe(v).e(v))dx= f~ (COVv;, V) dx

Cf~|V\/{|2dxs cﬁ|vag|2dx+cf|vm|2dx
Q Q Q
R
1

IA

dX1+C

¢ [R e+ ha(x0) — ha()

R 1
_Cf dX1+C
0 €+ [X|T

< Cen%_l, a=12
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Using [5.15) again, we have
il = [ (ev).e(@))ax= g [ Je) ax

> o J Rl
> 2 Jolo

In view of (4.16), we have

dx

2

f’e u; dX> flaxzul dx> = C »[S;R (6 + hl(xl) h2(X1))2
1 1

> dx, +C
“CJo er i ®
eﬁ‘l
> .
C
Thus
6%_1
11
a;; = .
11 C
Similarly, we have
i1
a2 > en
11 = C

By the argument as in the proof of Lemimal4.4, we have

2
6——2

Cem

Then, we have .
IC{ -Cjl < Cet™m, a=12

The proof of Theorer 511 is finished.

6 Appendix: Some results on the Langd system with in-
finity coefficients

Assume that irRY, Q andw are bounded open sets with smooth boundaries satisfying
w=Ulws CQ,

where{ws} are connected components®@f Clearly,m < co andws is open for all
1< s<m. Giveng € C(0Q;RY),0<y <1, >0,d1+ 2u > 0, and

u = oo, dA® + 249 - 0, asn— .

We denote
Cl(,ls) = /1515)6”5“ + /lgs) (5”(5“ + 6i|6jk) R 1<s<m
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CO = A6j6u +/l(5ik5j| + 5i|5jk),
and 9
CY, inws 1< s<m,
Cn(Xx) =
i {c«», in Q\ .
Consider for every

V-(Che(uy) =0, inQ,

{ ( ne( n)) (6.1)

u= g, onoQ.
Let ¥ be the linear space of rigid displacementsRSf i.e. the set of all vector
-valued functiong; = (7%, --- ,7%)" such that) = a+ Ax, wherea = (a;,--- ,a4)" is a

vector with constant real componenssis a skew-symmetriad x d)-matrix with real
constant elements. It is easy to see tHas a linear space of dimensiat{d + 1)/2.

Denote
d(d+1)
5 .

‘P:span{w"l l1<ea<

Equation[(6.11) can be rewritten in the following form to eraplze the transmission
condition ondw:

V- (CPe(un) =0, iNws, 1< s<m,
V- (COe(uy)) = 0, inQ\ @, 6.2)
% . “:% Y%, ONdws, 1< s<m; 13&3@,
6V0 + 8vo -
where
9
T = (COu) = AV - Ug) i+ 2 (Vi + (Vun)T) . ondws,
Ovol+
On| ._ (CPeW) = A9 (V- tp) A+ 1 (Vi + (Vun) ')A, onduws,
(91/0 -

and the subscript indicates the limit from outside and insidg, respectively.

Theorem 6.1.1fu, € HY(Q; RY) is a solution of equatiof.1), then y € C1(Q \ w; RN
Cl(w; RY) and satisfies equatiof©.2).

If u, € CHQ \ w; RYNCYH(w; RY) is a solution of equatio®.2), then y, € HY(Q; RY)
and satisfies equatiof®.1).

Proof. The first part of the theorem follows from Proposition 1.42%]. The proof of
the rest is standard. O

Theorem 6.2. There exists at most one solutionaH(Q; RY) to equation(@.1).

Proof. We only need to prove that i = 0 then a solution, of (€.1) is zero. Indeed
it follows from (6.1) that

f (Cob(un). €W)) dX= 0, ¥ y € C2(Q;RY).
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This implies by density 0€2(Q; RY) in H3(Q; RY) that [ (Cre(un), &) dx = 0. By
the property ofC,, and the first Korn’s inequality, we haveu, = 0, and therefore
u, = 0. O

Define the functional

In[V] :=

NI

f (Ca(X)e(v). (v)) dx (6.3)

Q
wherev belongs to the set

HL(Q;RY) = {v e HY(Q; RY)

V=g, on&Q},

wherep € CY7(0Q;RY), 0< y < 1.
Theorem 6.3. For every n, there exists a minimizer @ H;(Q; RY) satisfying

Ih[u] ;= min  1,[V].
veH(Q;RY)

Moreover, Y € HY(Q; RY) is a solution of equatiof6.1).

The proof of Theorerh 613 is standard. The existence of a niweinu, follows
from the lower semi-continuity property of the functionaithvrespect to the weak
convergence itd%(Q; RY) and the first Korn’s inequality.

Comparing equation (6.1), the Lamé system with infinityfiionts is

V- (COu) =0, inQ\w,

u|+ = u|_, Onaw,

e(u) ZUO, inw, (6.4)
. , d(d+1)

Jz;wsa_l/o+.w _O’ 1SSSm' 1SQST+,

u= o, onoL.

We have similar results:
Theorem 6.4.1f u € HY(Q;RY) satisfies(6.4) except for the fourth line, then &
CY{Q\ w;RY N CYw; RY).

Proof. By the third line of equatiori (614} is a linear combination df/*}, and there-
foreu € C¥(dw). SinceV - (CO¢(u)) = 0 onQ\ @, the regularity otiin Q \ w follows
from [2]. |

Theorem 6.5. There exists at most one solutionau HY(Q; RY) N CY(Q \ w;RY) N
Cl(w; RY) of (6.4).

Proof. It is equivalent to showing that ip = 0, equation[(6J4) only has the solution
u = 0. We know from the third and the second lines of equation) (4t ul,,, is

a linear combination ofy“}. Multiplying the first line of equation[(614) by and
integrating by parts leads to, using a version of the secard’&inequality,

_ (0) 1 2 1 2
o_fw(c e(u),e(u))dxchg\ale(uﬂ dszfQ IVuPdx

\w

It follows thatu = 0. O
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The existence of a solution can be obtained by using theti@ra method.
Define the energy functional

lo[V] 1= % fg i (CO%e(u), (u)) dx (6.5)

wherev belongs to the set
A= {u e HA(QRY [e(u) =0 in w}.
Theorem 6.6. There exists a minimizer& A satisfying

lo[u] = rvrggllw[v].

Moreover, ue HY(Q; RY) N CY(Q \ w; RY) N Cl(w; RY) is a solution of equatiolfs.4).

Proof. By the lower semi-continuity of,, and the weakly closed property &, it is
not difficult to see that a minimizere A exists and satisfieg- (COe(u)) = 0inQ\ @.
The only thing needs to shown is the fourth line[of [6.4), i.e.

[
Ows GVO
Indeed, sincas is a minimizer, forany 1< s<m, 1 < a < d(d + 1)/2, and any
¢ € C2(Q; RY) satisfyingg = y® onws andg = 0 onw; (t # 9), let

Yy* =0, 1<s<m

+

i(t) ==l [u+tp], teR,

we have

Gho= [ (€0t e)dx
Q\w

Therefore

0
0 =~ [ v (c0s)-sax= [ (cOsa)axs [ 2

[
- awsaV0+ '

Finally, we give the relationship betweapandu.

Theorem 6.7.Let u, and u in H(Q; RY) be the solutions of equatiofs.2) and (6.4),

respectively. Then
Uy — u in H{(Q:RY), as n— oo, (6.6)

and
fim 1n[un] = 1o [u] (6.7)

where |, and |, are defined by6.3)and (6.5).
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Proof. Step 1.Prove thafu,} weakly converges ik*(Q; RY) to a solutioru of (6.4).
Due to the uniqueness of the solution o {6.4), we only neeshtaw that after
passing to a subsequen¢a,} weakly converges it*(Q; RY) to a solutioru of (6.4).
Letn e H;(Q; RY) be fixed and satisfy = 0 onw. Sinceu, is the minimizer ofi,
in H;(Q; RY), we have, for some consta@tindependent of,

éue(un)nﬁz(m < Tn[un] < laln] = % f (CO%(n), em) dx < Clinlls -

Q\w
Using the second Korn’s inequality and the fact that ¢ ondQ, we obtain
lUnllHye) < G,
and therefore, along a subsequence,
Uy — U in HY(Q;RY), asn — co.

Next we show thatl is a solution of equation (6.4). In fact, we only need to prove
the following three conditions:

V- (CO%u)=0, inQ\w, (6.8)

eu) =0, inw, (6.9)

f M) yr—0, 1<s<m l<a<dd+1)2 (6.10)
Ows 8)/0 *

(i) Sinceu, € HY(Q; RY) is a solution of equatiori (6.1) ang — uin H(Q; RY),
we have, for any € C(Q \ w; RY), that

0= | (€t e0)dx | (V). ofo))dx

\w
Therefore
(CO%(u), &(9)) dx =0, V¢ eCo(Q\),

Q\w

that is [6.8).
(i) Letn € H;(Q; RY) be fixed and satisfyy = 0 onw, then sinceu, is a minimizer
of I in H}(Q; RY), we have

1
o] < Wl < 5 [ (€%t o) dx< C
Q\w
On the other hand,

m
o] > ) mini2f, a1 + 24) | le(un)lx
s=1 Ws

Sinceu!d - oo andda®® + 2ufY - oo asn — oo, we have

lle(Un)llzwy — O,  asn — oo.
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By (1), u, — uin HY(Q; RY). Therefore

lle(WllLzw) = O,
i.e.e(u) = 0inw, whichis [6.9).

(iii) By (i) and (ii), u satisfies[(6.8) and is a linear combinatior{f} on eachws,
and is equal te on Q. Thusu is smooth ordw. By the elliptic regularity theorems,
ue CHQ\w;R)NC*(Q\w;RY. Foreachs=1,2,--- ,m 1< a < d(d+ 1)/2, we
construct a functiop € C3(Q \ w; RY) such thap = y* ondws, p = 0 ondw; fort # s,
andp = 0 onodQ. By Green’s identity, we have the following:

0=- fg - V- (CO%(uy)) - pdx

- [ (Cetun). o)) s [ Folw
_ fg (). ) ax+ fa g—tv‘;_-w
)

- [ (ceu.e) o
Q\w

Similarly,

ou
0= fg \av,(@(me(u)). pdx = fg \D(C(O)e(u),e(p))dx+ f a_vo|+"’”a'

Ows

Sinceu, — uin HY(Q), it follows that

0= fg \E(C(O)e(un),e(p))dx—> f (CO%e(u), e(p)) dx

Q\w
Thus

fﬂ =0, l<s<m l<a<dd+1)2
awsavo+

Step 1 is completed.
Step 2.Prove [6.6) and (617).

Sinceu, is a minimizer ofl, ande(u) = 0 in w, we have

In[un] < In[u] = I[ul].

Thus
lim suplp[un] < lo[u].

n—oo

On the other hand, sin@u) = 0 andu, — uin H}(Q; RY),

lo[Uu] = %L\_(@(O)e(u),e(u))dx

< liminf = f (©<°)e(un),e(un))dx
n—oo 2 Q\w
1 1
iminf = (0) i - (9
< liminf 5 fg (GO, etum) dx limsup3 ) f (Cefun). efun) ax
< limsupl,[uy].

n—oo
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With the help of the first Korfs inequality, we easily dedude (6.7) ahd 6.6) from the
above. The proof of Theorem 6.7 is completed. i
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