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1 Introduction

Let f(z) be a complex polynomial of the form

f(z) =

n∑
i=0

fiz
i (fn 6= 0). (1.1)

We denote by π′(f), ν′(f), δ′(f) the number of roots of f(z) (counting for multiplicities), lying in
the upper half plane, the lower half plane of the complex plane and on the real axis R, respectively.
The triple In′(f) = (π′(f), ν′(f), δ′(f)) is referred to as the inertia of f(z) with respect to R.

For an interval I of R, we use the symbol δI(f), δ̃I(f), δ̃
(k)
I (f) to design the number of roots,

different roots, and different roots with multiplicity k, respectively, of f(z) lying in the interval
I. Obviously, δ′(f) = δR(f). We also define the triple In(A) = (π(A), ν(A), δ(A)) as the inertia
of an n × n matrix A, where π(A), ν(A) and δ(A) stand for the number of eigenvalues of A
(counting for multiplicities) lying in the right half-plane, the left half-plane of the complex plane
and on the imaginary axis iR, respectively.

For a pair of complex polynomials g(z), h(z) with the maximal degree n, the Bezout matrix
B(g, h) is defined by the bilinear form

g(z)h(w)− g(w)h(z)

z − w
= (1, z, · · · , zn−1)B(g, h)(1, w, · · · , wn−1)T. (1.2)
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2 Improvement of Hermite-Fujiwara Theorem for the Inertia of Polynomials†

As is well-known, the classical Hermite-Fujiwara theorem (see, e.g., [1,7]) says that if the Bezout
matrix B(f, f̄) is nonsingular, then

In′(f) = In(−iB(f, f̄)), δ′(f) = 0, (1.3)

in which f̄(z) is the conjugate polynomial of f(z), i.e.,

f̄(z) =

n∑
i=0

f̄iz
i.

In this nonsingular case, δI(f) = 0 for every interval I of the real axis. On the other hand, if the
Bezout matrix B(f, f̄) is singular, the polynomials f(z) and f̄(z) are not prime and then f(z)
can be written as f(z) = p(z)f1(z), in which p(z) = gcd(f(z), f̄(z)) is a monic real polynomial
of degree at least one, and gcd(f1(z), f̄1(z)) = 1 (see, e.g., [2,8]). Since In′(f) = In′(p) + In′(f1),
by (1.3) we have in turn

In′(f) = In′(p) + In(−iB(f1, f̄1)), δ′(f) = δ′(p). (1.4)

In this singular case, δI(f) = δI(p), δ̃I(f) = δ̃I(p), and δ̃
(k)
I (f) = δ̃

(k)
I (p) for every interval I of

the real axis. Thus it is desirable to find the number δI(p), δ̃I(p) and δ̃
(k)
I (p) for such interval I.

Throughout this paper, we always assume that f(z) is given as in (1.1) such that B(f(z), f̄(z))
is singular, and p(z) = gcd(f(z), f̄(z)) is of degree m > 1.

In what follows, we will concentrate on the intrinsic relations between the number δI(f) or

δ̃I(f) or even δ̃
(k)
I (f) for a given interval I of the real axis and the inertia of the related Bezout or

Hankel matrices, rather than attempt to consider how to evaluate the number δI(f) or δ̃I(f) or

even δ̃
(k)
I (f) efficiently. Actually, there are many fast or even superfast algorithms for computing

the inertia of Bezout matrices and Hankel matrices, which are available in the literature (see,
e.g., [9–16] and the references therein). Based on the relations presented here together with
these existing efficient algorithms, computationally we may obtain the most efficient procedures

to evaluate the number δI(f) or δ̃I(f) or even δ̃
(k)
I (f) with little effort. Moreover it is worth

noting that the basic strategy adopted in this paper is much different from those given in [2–6].

The rest of the paper is organized as follows. In Section 2, we give a factorization of p(z)
into a power product of its factors pk(z) (k = 1, · · · , s), in which each factor pk(z) is either the
constant one or a monic real polynomial with only simple roots in the complex plane (Lemma
2.1 below), and then we formulate the inertia of each factor pk(z) with degree at least one in
terms of the inertia of a certain Bezout or Hankel matrix. Consequently, we can formulate the
inertia of f(z) with respect to R and specially the number δR(f) in terms of the inertia of a
sequence of Bezout or Hankel matrices. The former result can be viewed as an improvement of
the well-known Hermite-Fujiwara theorem (Theorem 2.3). In Section 3, we use the improvement
result and a perturbation method of imposing a subtle rotation on the variable to deduce explicit
formulas for the numbers δR+(f) and δR−(f), where R+,R− stand for the positive real axis and
the negative real axis, respectively (Theorem 3.2 and Corollary 3.3). Finally, in Section 4, we
give some explicit formulas for the number δI(f) in the cases of I = (a,+∞), I = (−∞, a), and
I = (a, b), respectively (Theorem 4.2 and Corollary 4.3). Moreover, we can get more information

about the roots of f(z), such as the numbers δ̃
(k)
I (f) (k = 1, 2, · · · , s) of different roots with a

given multiplicity k located in an interval I of the real axis (Corollaries 3.4, 4.4 and 4.5).
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2 An improvement of Hermite-Fujiwara theorem for the
inertia of polynomials

In this section, we give first a certain factorization of p(z) into a power product of its factors
with only simple roots in the complex plane, and then use it to formulate the inertia of f(z)
with respect to R in terms of the inertia of a sequence of Bezout or Hankel matrices. This later
result can be viewed as an improvement of the well-known Hermite-Fujiwara theorem ( [1]).

Starting from the real polynomial p(z), by the help of Euclidean algorithm for polynomials,
we compute easily a sequence of greatest common divisors dk(z) (k = 1, · · · , s):

d1(z) = gcd(p(z), p′(z)),

d2(z) = gcd(d1(z), d′1(z)),

· · · · · · · · · · · · · · · · · ·

ds−1(z) = gcd(ds−2(z), d′s−2(z)) 6= 1,

ds(z) = gcd(ds−1(z), d′s−1(z)) = 1.

(2.1)

Note that such s is a unique integer dependent on p(z), and does coincide with the maximum of
the multiplicities of the roots of p(z). With these polynomials dk(z) (k = 1, · · · , s), we define in
turn

q1(z) =
p(z)

d1(z)
, qk(z) =

dk−1(z)

dk(z)
, k = 2, · · · , s. (2.2)

Obviously, such qk(z) (k = 1, · · · , s) are monic real polynomials with only simple roots in the
complex plane and satisfy

p(z) = q1(z)q2(z) · · · qs(z). (2.3)

Moreover, we check easily that the roots of qk+1(z) are also the roots of qk(z), and thus qk+1(z) |
qk(z) (k = 1, · · · , s − 1). Thus we have that the number δ′(q1) coincides with δ̃R(f). Now we
define

pk(z) =
qk(z)

qk+1(z)
, k = 1, · · · , s− 1; ps(z) = qs(z). (2.4)

Then by (2.3) and (2.4) we obtain immediately a special factorization of p(z) as follows. Here
some of pk (k = 1, · · · , s − 1) are possibly equal to the constant one. For convenience, we
introduce the symbol ∆:

∆ = {k | degpk > 1, k = 1, · · · , s}.

Lemma 2.1. Let p(z) = gcd(f(z), f ′(z)), and let pk(z) (k = 1, · · · , s) be monic real polyno-
mials defined by (2.1)–(2.4). Then p(z) can be factorized as

p(z) =
∏
k∈∆

pkk(z), (2.5)

in which (pi(z), pj(z)) = 1 for all i, j ∈ ∆ (i 6= j), and for k ∈ ∆, pk(z) has only simple roots in
the complex plane.

To determine the inertia In′(p) of p(z) and the numbers δI(p), δ̃I(p) and δ̃
(k)
I (p) for a given

interval I of the real axis, it remains to determine the inertia In′(pk) and the numbers δI(pk),
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δ̃I(pk), and, δ̃
(k)
I (pk) for k ∈ ∆, because

In′(p) =
∑
k∈∆

kIn′(pk),

δI(p) =
∑
k∈∆

kδI(pk),

δ̃I(p) =
∑
k∈∆

δI(pk) = δI(q1),

δ̃
(k)
I (p) = δI(pk).

(2.6)

Now we turn to consider generally the inertia of an arbitrary monic real polynomial q(z) of
degree at least one, with only simple roots in the complex plane. The following theorem shows
that the inertia of q(z) with respect to R can be formulated in terms of the inertia of the Bezout
matrix B(q, q′) or the Hankel matrix H(q, q′) = (hi+j−1)mi,j=1, in which m = deg q(z), h1, h2,
· · · , h2m−1 are the Markov parameters of the rational function q′(z)/q(z).

Theorem 2.2. Let q(z) be a monic real polynomial of degree m (m > 1), which has only
simple roots in the complex plane. Then

In′(q) = {ν(B(q, q′)), ν(B(q, q′)), m− 2ν(B(q, q′))}, (2.7)

or equivalently,
In′(q) = {ν(H(q, q′)), ν(H(q, q′)), m− 2ν(H(q, q′))}. (2.8)

Proof. It is well known (see e.g. [2, Proposition 2.7]) that

B(q, q′) = B(q, 1)H(q, q′)B(q, 1). (2.9)

We remark that (2.9) holds with q′(z) replaced by an arbitrarily chosen polynomial h(z) with
degh(z) 6 degq(z). Since B(q, 1) = B(q, 1)∗ is nonsingular, the Bezout matrix B(q, q′) and the
Hankel matrix H(q, q′) have the same inertia. Now it suffices to prove (2.7) holds.

Let qε(z) = q(z− iε), in which ε > 0 is sufficiently small. Then α is a root of q(z) if and only
if α+ iε is a root of qε(z), α lies in the open upper (lower) half-plane if and only if α+ iε lies in
the same half-plane for a sufficiently small ε > 0, and if α lies on the real axis then α+ iε lies in
the open upper half-plane. From above analysis we have ν′(q) = ν′(qε). Note that the roots of
q(z) are symmetric with respect to the real axis, then

In′(q) = {ν′(qε), ν′(qε), m− 2ν(qε)}.

To describe the inertia of q(z), it remains to compute ν(qε). First of all, we prove

gcd(qε(z), q̄ε(z)) = 1. (2.10)

We suppose that qε(z) = q(z − iε) and q̄ε(z) = q(z + iε) are not prime, or equivalently, q(z − iε)
and q(z + iε) have a common root. If α is a common root of them, then α + iε, α − iε are two
different roots of q(z) and the distance of them is equal to 2ε. Since ε > 0 is sufficiently small,
it is impossible. So (2.10) holds and thus the Bezoutian matrix B(qε, q̄ε) is nonsingular. By the
well known Routh-Hurwitz-Fujiwara theorem, we have

In′(qε) = In(
1

i
B(ε)), (2.11)
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in which B(ε) = B(pε, p̄ε), D = diag(1,−1, · · · , (−1)k−1).

We check easily that each entry of B(ε) is a polynomial of ε and B(0) = 0, then B(ε) =
εB′(0) + o(ε) = ε(B′(0) + o(1)), in which o(1)→ 0 when ε tends to 0. This implies that

In(
1

i
B(ε)) = In(

1

i
B′(0) + o(1)). (2.12)

Observe that
(1, z, · · · , zm−1)B(ε)(1, ω, · · · , ωm−1)T

=
qε(z)q̄ε(ω)− qε(ω)q̄ε(z)

z − ω

=
q(z − iε)q(ω + iε)− q(ω − iε)q(z + iε)

z − ω
,

and thus
(1, z, · · · , zm−1)B′(0)(1, ω, · · · , ωm−1)T

=
d

dε

(
q(z − iε)q(ω + iε)− q(ω − iε)q(z + iε)

z − ω

) ∣∣∣
ε=0

= i

(
−q
′(z − iε)q(ω + iε)− q′(ω − iε)q(z + iε)

z − ω

+
q(z − iε)q′(ω + iε)− q(ω − iε)q′(z + iε)

z − ω

) ∣∣∣
ε=0

= 2i

(
q(z)q′(ω)− q(ω)q′(z)

z − ω

)
= 2i(1, z, · · · , zm−1)B(q, q′)(1, ω, · · · , ωm−1)T.

It follows from the last equation implies that B′(0) = 2iB(q, q′). By (2.11) and (2.12), we have

In′(qε) = In(2B(q, q′) + o(1)) = In(B(q, q′) + o(1)).

Since q(z) has only simple roots in the complex plane,we have that the polynomials q(z) and
q′(z) are prime. Then B(q, q′) is a nonsingular matrix. From the nonsingularity of B(q, q′) and
the fact that the eigenvalues of a matrix are continuous functions of the entries of the matrix,
we derive that In(B(q, q′) + o(1)) = In(B(q, q′)). Hence,

π′(q) = ν′(q) = ν′(qε) = ν(B(q, q′)),

δ′(q) = m− 2ν′(q) = m− 2ν(B(q, q′)).

So (2.7) holds, as asserted. �

Taking as basis Lemma 2.1 and Theorem 2.2 together with (1.4), (2.6), (2.7) and (2.8), we
can formulate the inertia In′(f) in terms of the inertia of Bezout matrices B(pk, p

′
k) for k ∈ ∆ or

Hankel matrices H(pk, p
′
k) for k ∈ ∆, which is a improvement to the well known Hermite-Fujiwara

theorem for the inertia of polynomials.

Theorem 2.3. Let B(f, f̄) be singular, p(z) = gcd(f(z), f̄(z)) be of degree m (m > 1) such
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that (2.5) holds and f(z) = p(z)f1(z). Then

In′(f) = In
(
−iB(f1, f̄1)

)
+

{∑
k∈∆

kν(B(pk, p
′
k)),

∑
k∈∆

kν(B(pk, p
′
k)),

m− 2
∑
k∈∆

kν(B(pk, p
′
k))

}
,

or equivalently,

In′(f) = In
(
−iB(f1, f̄1)

)
+

{∑
k∈∆

kν(H(pk, p
′
k)),

∑
k∈∆

kν(H(pk, p
′
k)),

m− 2
∑
k∈∆

kν(H(pk, p
′
k))

}
.

Since δR(f) = δ′(f), δ̃R(f) = δ′(q1) = deg q1(z)− 2ν′(q1) and δ̃
(k)
R (f) = δ′(pk) = deg pk(z)−

2ν′(pk) for k ∈ ∆, the following result is a direct consequence of Theorems 2.2 and 2.3.

Corollary 2.4. Let B(f, f̄) be singular, and let p(z) be as in Theorem 2.3. Then

δR(f) = m− 2
∑
k∈∆

kν(B(pk, p
′
k)) = m− 2

∑
k∈∆

kν(H(pk, p
′
k)),

δ̃R(f) = deg q1(z)− 2ν(B(q1, q
′
1)) = deg q1(z)− 2ν(H(q1, q

′
1)),

(2.13)

where q1(z) is defined by (2.2), and

δ̃
(k)
R (f) = deg pk(z)− 2ν(B(pk, p

′
k)) = deg pk(z)− 2ν(H(pk, p

′
k)) (2.14)

for k ∈ ∆.

3 Explicit formulas for the number δR+(f) and δR−(f) of
positive and negative real roots of f(z)

In this section, we first evaluate the number δR+(q) of positive real roots of q(z) in terms of
the inertia of two associated Bezout matrices with q(z), in which q(z) is a monic real polynomial
with only simple roots in the complex plane, then use this result to deduce explicit formulas for
the numbers δR+(f) and δR−(f) of positive and negative real roots of f(z), respectively.

By Theorem 2.2 and by use of a perturbation method of imposing a slight rotation on the
variable, we can prove the following theorem on the rule of δR+(q).

Theorem 3.1. Let q(z) be a monic real polynomial of degree at least one, with only simple
roots in the complex plane and q(0) 6= 0. Let Cq be the first companion matrix of q(z). Then

δR+(q) = π(B(q, zq′))− ν(B(q, q′)) = π(B(q, q′)Cq)− ν(B(q, q′)), (3.1)

or equivalently,

δR+(q) = π(H(q, zq′))− ν(H(q, q′)) = π(H(q, q′)CTq )− ν(H(q, q′)). (3.2)
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Proof. Observe that the set of roots of the real polynomial q(z) is symmetric with respect
to R, and a small clockwise rotation of the set via the origin z = 0 will destroy its symmetry
property. We define qθ(z) = q(zeiθ) for θ > 0, and choose sufficiently small positive θ such
that qθ(z) has neither roots located on R nor a pair of complex conjugate roots symmetric with
respect to R. In that case, the polynomials qθ(z) and q̄θ(z) have no common roots in the complex
plane, and thus B(qθ, q̄θ) is nonsingular. From the classical Hermite-Fujiwara theorem (see (1.3)
above), we have

ν′(qθ) = ν(−iB(qθ, q̄θ)). (3.3)

By the construction, for those sufficiently small θ > 0, the roots of q(z) lying in the upper (lower,
resp.) half plane are changed to the roots of qθ(z) in the same region, but the roots of q(z) lying
on the positive (negative, resp.) real axis are changed to the roots of qθ(z) in the lower (upper,
resp.) half plane. Then, by Theorem 2.2 we have in turn

ν′(qθ) = ν′(q) + δR+(q) = ν(B(q, q′)) + δR+(q). (3.4)

Combining (3.3) and (3.4), we get

δR+(q) = ν(−iB(qθ, q̄θ))− ν(B(q, q′)). (3.5)

On the other hand, each entry of the Bezout matrix B(pθ, q̄θ) being a differential function of
θ and B(q0, q̄0) = B(q, q̄) = 0, we have the expanded form

B(qθ, q̄θ) = θB′(q0, q̄0) + o(θ). (3.6)

By the definition of Bezout matrix (see (1.2)), we have

(1, z, · · · , zn−1)B′(q0, q̄0)(1, w, · · · , wn−1)T

=

(
qθ(z)q̄θ(w)− qθ(z)q̄θ(w)

z − w

)′
θ=0

=

(
q(zeiθ)q(we−iθ)− q(weiθ)q(ze−iθ)

z − w

)′
θ=0

= 2i

(
zq′(z)q(w)− q(z)wq′(w)

z − w

)
= (1, z, · · · , zn−1)(2iB(zq′, q))(1, w, · · · , wn−1)

T

.

This implies that B′(q0, q̄0) = 2iB(zq′, q). Since q(0) 6= 0, and thus the real polynomials zq′(z)
and q(z) have no common zeros, −iB′(q0, q̄0) = 2B(zq′, q) is real symmetric and nonsingular.
Therefore, from (3.6) it follows that

−iB(qθ, q̄θ) = θ(−iB′(q0, q̄0) + o(1)) = θ(2B(zq′, q) + o(1)),

and thus
ν(−iB(qθ, q̄θ)) = ν(2B(zq′, q) + o(1)) = ν(2B(zq′, q))

= ν(B(zq′, q)) = π(B(q, zq′)). (3.7)

Inserting (3.7) into (3.5), we obtain the first equality of (3.1) immediately.
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Furthermore, the Barnett factorization formula for Bezout matrices (see, e.g., [2, Proposition
2.8]) says that B(q, zq′) = B(q, q′)Cq, in which Cq is the first companion matrix of q(z). Then
the rule of δR+(q) can be rewritten as

δR+(q) = π(B(q, q′)Cq)− ν(B(q, q′)). (3.8)

On the other hand, the rule

δR+(q) = π(H(q, zq′))− ν(H(q, q′))

follows from (3.1) and (2.7) (and its extended form). The second rule of δR+(q) in (3.2) holds
as well, since by a direct computation we can check that the relation H(q, zq′) = H(q, q′)CT

q is
valid. �

As stated in the introduction part, the number δR±(f) coincide with the numbers δR±(p), in
which p(z) = gcd(f(z), f̄(z)). Then by (2.5) we have

δR±(f) =
∑
k∈∆

kδR±(pk). (3.9)

Thus to count δR±(f) it remains only to determine the numbers δR±(pk) for each factor pk(z),
k ∈ ∆.

Applying Theorem 3.1, Corollary 3.2, (3.8) and (3.9) to each factor pk(z) of p(z), k ∈ ∆,
we obtain two explicit formulas for the number δR+(f) in terms of the inertia of a sequence of
Bezout or Hankel matrices.

Theorem 3.2. Let f(z) be given as in (1.1) and let p(z) = gcd(f(z), f̄(z)) have a factorization
as in (2.5). If p(0) 6= 0, then

δR+(f) =
∑
k∈∆

k[π(B(pk, zp
′
k))− ν(B(pk, p

′
k))]

=
∑
k∈∆

k[π(B(pk, p
′
k)Cpk)− ν(B(pk, p

′
k))],

or equivalently,

δR+(f) =
∑
k∈∆

k[π(H(pk, zp
′
k))− ν(H(pk, p

′
k))]

=
∑
k∈∆

k[π(H(pk, p
′
k)CT

pk
)− ν(H(pk, p

′
k))].

Remark that if p(0) = 0, then f(0) = 0, so that there exists a positive integer t found easily
such that f(z) = ztf̃(z), f̃(0) 6= 0. In this case, we use f̃(z) instead of the original f(z).

By Corollary 2.4 and Theorem 3.2, we can give explicit formulas for the number δR−(f) in
terms of the inertia of Bezout or Hankel matrices as well.

Corollary 3.3. Let f(z) and p(z) be as in Theorem 3.2. Then

δR−(f) =
∑
k∈∆

k[ν(B(pk, zp
′
k))− ν(B(pk, p

′
k))]

=
∑
k∈∆

k[ν(B(pk, p
′
k)Cpk)− ν(B(pk, p

′
k))],

(3.10)



Yong-jian HU, Xu-zhou ZHAN, Gong-ning CHEN 9

or equivalently,

δR−(f) =
∑
k∈∆

k[ν(H(pk, zp
′
k))− ν(H(pk, p

′
k))]

=
∑
k∈∆

k[ν(H(pk, p
′
k)CT

pk
)− ν(H(pk, p

′
k))].

Proof. In view of (2.9) and its extended form, and the relations B(pk, zp
′
k) = B(pk, p

′
k)Cpk

and H(pk, zp
′
k) = H(pk, p

′
k)CT

pk
for k ∈ ∆, we need only to verify the first equality in (3.10). It

follows from Corollary 2.4 and Theorem 3.2 that

δR−(f) = δR−(p) = deg p(z)−
∑
k∈∆

k[π(B(pk, zp
′
k)) + ν(B(pk, p

′
k))], (3.11)

moreover,

deg p(z) =
∑
k∈∆

k deg pk(z).

Note that pk(0) 6= 0 and thus each B(pk, zp
′
k) (k ∈ ∆) is a nonsingular real symmetric matrix,

so that
π(B(pk, zp

′
k)) + ν(B(pk, zp

′
k)) = deg pk(z), k ∈ ∆, (3.12)

Thus (3.11) can be rewritten as

δR−(f) =
∑
k∈∆

k deg pk(z)−
∑
k∈∆

k[π(B(pk, zp
′
k)) + ν(B(pk, p

′
k))]

=
∑
k∈∆

k[(deg pk(z)− π(B(pk, zp
′
k)))− ν(B(pk, p

′
k))]

=
∑
k∈∆

k[ν(B(pk, zp
′
k))− ν(B(pk, p

′
k))],

as required. �

At the end of this section, we point out that similar results to (2.10)–(2.11) are valid for
δ̃R±(f) in the case of p(0) 6= 0, where δ̃R±(f) are the numbers of different roots of f in R±,

analogously for δ̃
(k)
R±(f) (k ∈ ∆).

Corollary 3.4. Let f(z) and p(z) be as in Theorem 3.2. Then

δ̃R+(f) = π(B(q1, zq
′
1))− ν(B(q1, q

′
1))

= π(B(q1, q
′
1)Cq1)− ν(B(q1, q

′
1))

= π(H(q1, zq
′
1))− ν(H(q1, q

′
1))

= π(H(q1, q
′
1)CT

q1)− ν(H(q1, q
′
1)),

δ̃R−(f) = ν(B(q1, zq
′
1))− ν(B(q1, q

′
1))

= ν(B(q1, q
′
1)Cq1)− ν(B(q1, q

′
1))

= ν(H(q1, zq
′
1))− ν(H(q1, q

′
1))

= ν(H(q1, q
′
1)CT

q1)− ν(H(q1, q
′
1)),
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and for k ∈ ∆,

δ̃
(k)
R+ (f) = π(B(pk, zp

′
k))− ν(B(pk, p

′
k))

= π(B(pk, p
′
k)Cpk)− ν(B(pk, p

′
k))

= π(H(pk, zp
′
k))− ν(H(pk, p

′
k))

= π(H(pk, p
′
k)CT

pk
)− ν(H(pk, p

′
k)),

and

δ̃
(k)
R−(f) = ν(B(pk, zp

′
k))− ν(B(pk, p

′
k))

= ν(B(pk, p
′
k)Cqk)− ν(B(pk, p

′
k))

= ν(H(pk, zp
′
k))− ν(H(pk, p

′
k))

= ν(H(pk, p
′
k)CT

qk
)− ν(H(pk, p

′
k)).

4 Explicit formulas for the number δI(f) in the cases of
I = (a,+∞), I = (−∞, a), and I = (a, b)

By using the results established in Section 3, we present in this section some explicit formulas
for the number δI(f) in the cases of I = (a,+∞), I = (−∞, a), and I = (a, b), respectively,
where a and b are real numbers.

We first consider the number δI(p) for the case of I = (a,+∞). We need the following
property of Bezout matrix, which can be easily verified by replacing the variables z and w in
(1.2) with z + z0 and w + z0, respectively (see, e.g., [2, Proposition 4.1]).

Lemma 4.1. Let z0 be a complex number and g(z), h(z) be a pair of polynomials with maximal
degree n, and let g̃(z) = g(z + z0), h̃(z) = h(z + z0). Then

B(g̃, h̃) = Vn(z0)B(g, h)Vn(z0)T,

in which

Vn(z0) =

((
i
j

)
zj−i0

)n−1

i,j=0

is the nonsingular n× n generalized Vandermonde matrix associated with z0 (Vn(0) = In).

If g(z), h(z) are both real polynomials and z0 is a real number, then B(g̃, h̃) and B(g, h)
are real symmetric matrices such that, by Lemma 4.1, In(B(g̃, h̃)) = In(B(g, h)). Let now a
be a real number and q(z) be a monic real polynomial with only simple roots in the complex
plane. Without loss of generality, we assume that q(a) 6= 0 (otherwise, q(z) can be factorized
as q(z) = (z − a)tq̂(z) for some integer t with q̂(a) 6= 0. Since δI(q) = δI(q̂), I = (a,+∞),
we turn to consider the number δI(q̂)). Now we define a monic real polynomial q̃(z) by setting
q̃(z) = q(z + a). It is obvious that q̃(z) is also a monic real polynomial with only simple roots
in the complex plane, q̃(0) 6= 0 and satisfies δR+(q̃) = δI(q) for I = (a,+∞). By Lemma 4.1 and
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Theorem 3.1, we have that if q(a) 6= 0,

δI(q) = δR+(q̃)

= π(B(q̃, zq̃′))− ν(B(q̃, q̃′))

= π(B(q(z + a), zq′(z + a)))− ν(B(q(z + a), q′(z + a))

= π(B(q, (z − a)q′))− ν(B(q, q′)). (4.1)

For the case of I = (−∞, a), by Theorem 2.2 and (4.1) we have that if q(a) 6= 0,

δI(q) = deg q(z)− π(B(q, (z − a)q′))− ν(B(q, q′))

= ν(B(q, (z − a)q′))− ν(B(q, q′)). (4.2)

Applying (4.1) and (4.2) to each factor pk(z) (k ∈ ∆), we obtain the following theorem.

Theorem 4.2. Let a be a real number and let p(z) = gcd(f(z), f̄(z)) have a factorization as
(2.5). If f(a) 6= 0, then

δI(f) =


∑
k∈∆

k[π(B(pk, (z − a)p′k))− ν(B(pk, p
′
k))], I = (a,+∞);

∑
k∈∆

k[ν(B(pk, (z − a)p′k))− ν(B(pk, p
′
k))], I = (−∞, a).

(4.3)

Let now I = (a, b) be a finite interval of the real axis. It is obvious that δI(f) = δI1(f)−δI2(f),
where I1 = (a,+∞) and I2 = (b,+∞). By Theorem 4.2, we obtain immediately an explicit
formula for the number δI(f) under the assumption that f(a)f(b) 6= 0.

Corollary 4.3. Let f(z), p(z) and pk(z) (k ∈ ∆) be the same as in Theorem 4.2, and
I = (a, b) be a finite interval of the real axis. If f(a)f(b) 6= 0, then

δI(f) =
∑
k∈∆

k[π(B(pk, (z − a)p′k))− π(B(pk, (z − b)p′k))]. (4.4)

Similarly, formulas (4.3) and (4.4) can also be formulated in terms of the inertia of a sequence
of Hankel matricesH(pk, (z−a)p′k), H(pk, (z−b)p′k) and H(pk, p

′
k) (k ∈ ∆). Moreover, the similar

rules to (2.13)–(2.14) hold as well in the following:

Corollary 4.4. Let f(z), p(z), pk(z) (k ∈ ∆) and I be the same as in Theorem 4.2. If
f(a) 6= 0, then

δ̃I(f) =

{
π(B(q1, (z − a)q′1))− ν(B(q1, q

′
1)), I = (a,+∞);

ν(B(q1, (z − a)q′1))− ν(B(q1, q
′
1)), I = (−∞, a),

and for k ∈ ∆,

δ̃
(k)
I (f) =

{
π(B(pk, (z − a)p′k))− ν(B(pk, p

′
k)), I = (a,+∞);

ν(B(pk, (z − a)p′k))− ν(B(pk, p
′
k)), I = (−∞, a).
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Corollary 4.5. Let f(z), p(z), pk(z) (k ∈ ∆) and I be the same as in Corollary 4.3. If
f(a)f(b) 6= 0, then

δ̃I(f) = ν(B(q1, (z − a)q′1))− ν(B(q1, (z − b)q′1))

= ν(H(q1, (z − a)q′1))− ν(H(q1, (z − b)q′1)),

and for k ∈ ∆,

δ̃
(k)
I (f) = ν(B(pk, (z − a)p′k))− ν(B(pk, (z − b)p′k))

= ν(H(pk, (z − a)p′k))− ν(H(pk, (z − b)p′k)).

Finally, we point out that the results established in this paper can be used to determine the
number of roots of a complex polynomial located on a given straight line, a ray or a line segment
of the complex plane. Let f(z) be a complex polynomial given as in (1.1), and let z1, z2 be two
distinct points in the complex plane. Let

S(I, z1, z2) = {(1− t)z1 + tz2 | t ∈ I},

in which I is an interval of the real axis. Then S(I, z1, z2) stands for a straight line, a ray and
a line segment in the complex plane in the cases of I = R, I = R+ and I = (a, b), respectively.
Moreover,

δS(I,z1,z2)(f) = δI(g), δ̃S(I,z1,z2)(f) = δ̃I(g), δ̃
(k)
S(I,z1,z2)(f) = δ̃

(k)
I (g), k ∈ ∆,

in which g(z) = f(z1 + z(z2 − z1)), δS(I,z1,z2)(f), δ̃S(I,z1,z2)(f) and δ̃
(k)
S(I,z1,z2)(f) for k ∈ ∆ stand

for the number of roots, different roots, and different roots with multiplicity k of f(z) lying on
S(I, z1, z2), respectively.
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