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1 Introduction

Continuous-state branching processes (CB-processes) arose as weak limits of
rescaled discrete Galton-Watson branching processes (see [12,14]). Continuous-
state branching processes with immigration (CBI-processes) are generalizations
of them describing the situation where immigrants may come from other
sources of particles. Those processes can be obtained as the scaling limits of
discrete branching processes with immigration (see [13,15]). A CBI-process was
constructed in [7] as the strong solution of a stochastic equation driven by
Brownian motions and Poisson random measures (see also [10]). A similar
construction was given in [18] using a stochastic equation driven by time-space
Gaussian white noises and Poisson random measures.

In the study of scaling limits of coalescent processes with multiple collisions,
[6] constructed a flow of jump-type CB-processes as the weak solution flow of
a system of stochastic equations driven by Poisson random measures (see also
[4,5]. A more general flow of CBI-processes was constructed in [8] as strong
solutions of stochastic equations driven by Gaussian white noise and Poisson
random measures. The flows in [6,8] were also treated as path-valued processes
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with independent increments. Motivated by the work of [1,2] on tree-valued
Markov processes, another flow of CBI-processes was introduced in [17], which
was identified as a path-valued branching process. From the flows in [6,8,17],
one can define some superprocesses or immigration superprocesses over the
positive half line with local or nonlocal branching mechanisms. To study the
genealogy trees for critical branching processes conditioned on non-extinction,
Bakhtin [3] considered a flow of continuous CBI-processes driven by a time-space
Gaussian white noise. He obtained the flow as a rescaling limit of systems of
discrete Galton-Watson processes and also pointed out the connection of the
model with a superprocess conditioned on non-extinction.

In this paper, we consider two flows of discrete Galton-Watson branching
processes and show suitable rescaled sequences of the flows converge to the flows
of [8] and [17], respectively. The main motivation of the work is to understand
the connection between discrete and continuum tree-valued processes. Our
results generalize those of [3] to flows of discontinuous CB-processes. To simplify
the presentation, we only treat models without immigration, but the arguments
given here carry over to those with immigration. We shall first prove limit
theorems for the induced superprocesses, from which we derive the convergence
of the finite-dimensional distributions of the path-valued branching processes.

In Section 2, we give a brief review of the flows of [8] and [17]. In Section 3,
we consider flows consisting of independent branching processes and show their
scaling limit gives a flow of the type of [8]. The formulation and convergence
of interactive flows are discussed in Section 4, which lead to a flow in the class
studied in [17].

Let
N = {0, 1, 2, . . .}, N+ = {1, 2, . . .}.

For any a � 0, let M [0, a] be the set of finite Borel measures on [0, a] endowed
with the topology of weak convergence. We identify M [0, a] with the set F [0, a]
of positive right continuous increasing functions on [0, a]. Let B[0, a] be the
Banach space of bounded Borel functions on [0, a] endowed with the supremum
norm ‖ · ‖. Let C[0, a] denote its subspace of continuous functions. We use
B[0, a]+ and C[0, a]+ to denote the subclasses of positive elements and C[0, a]++

to denote the subset of C[0, a]+ of functions bounded away from zero. For
μ ∈M [0, a] and f ∈ B[0, a], write

〈μ, f〉 =
∫
fdμ

if the integral exists.

2 Local and nonlocal branching flows

In this section, we recall some results on constructions and characterizations of
the flow of CB-processes and the associated superprocess. It is well known that
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the law of a CB-process is determined by its branching mechanism φ, which is
a function on [0,∞) and has the representation

φ(z) = bz +
1
2
σ2z2 +

∫ ∞

0
(e−zu − 1 + zu)m(du), (1)

where σ � 0 and b are constants, and (u ∧ u2)m(du) is a finite measure
on (0,∞). Let W (ds,du) be a white noise on (0,∞)2 based on dsdu, and
let Ñ(ds,dz,du) be a compensated Poisson random measure on (0,∞)3 with
intensity dsm(dz)du. By [8, Theorem 3.1], a CB-process with branching
mechanism φ can be constructed as the pathwise unique strong solution {Yt : t �
0} to the stochastic equation:

Yt = Y0 + σ

∫ t

0

∫ Ys−

0
W (ds,du)−

∫ t

0
bYs−ds

+
∫ t

0

∫ ∞

0

∫ Ys−

0
zÑ(ds,dz,du). (2)

Let us fix a constant a � 0 and a function μ ∈ F [0, a]. Let {Yt(q) : t � 0}
denote the solution to (2) with Y0(q) = μ(q). We can consider the solution flow
{Yt(q) : t � 0, q ∈ [0, a]} of (2). As observed in [8], there is a version of the
flow which is increasing in q ∈ [0, a]. Moreover, we can regard {(Yt(q))t�0 : q ∈
[0, a]} as a path-valued stochastic process with independent increments. Let
{Yt : t � 0} denote the M [0, a]-valued process so that Yt[0, q] = Yt(q) for every
t � 0 and q ∈ [0, a]. Then {Yt : t � 0} is a càdlàg superprocess with branching
mechanism φ and trivial spatial motion (see [8, Theorems 3.9, 3.11]). For λ � 0,
let t �→ v(t, λ) be the unique locally bounded positive solution of

v(t, λ) = λ−
∫ t

0
φ(v(s, λ))ds, t � 0. (3)

For any f ∈ B[0, a]+, define x �→ v(t, f)(x) by

v(t, f)(x) = v(t, f(x)).

Then the superprocess {Yt : t � 0} has transition semigroup (Qt)t�0 on M [0, a]
defined by∫

M [0,a]
e−〈ν,f〉Qt(μ, ν) = exp{−〈μ, v(t, f)〉}, f ∈ B[0, a]+. (4)

By [16, Proposition 3.1], one can see that v(t, f) ∈ C[0, a]++ for every f ∈
C[0, a]++. Then it is easy to verify that (Qt)t�0 is a Feller semigroup.

We can define another branching flow. For this purpose, let us consider an
admissible family of branching mechanisms {φq : q ∈ [0, a]}, where φq is given
by (1) with parameters (b,m) = (bq,mq) depending on q ∈ [0, a]. Here, by an



66 Hui HE, Rugang MA

admissible family, we mean that for each z � 0, the function q �→ φq(z) is
decreasing and continuously differentiable with the derivative

ψθ(z) = − ∂

∂θ
φθ(z)

of the form
ψθ(z) = hθz +

∫ ∞

0
(1 − e−zu)nθ(du), (5)

where hθ � 0 and nθ(du) is a σ-finite kernel from [0, a] to (0,∞) satisfying

sup
0�θ�a

[
hθ +

∫ ∞

0
unθ(du)

]
<∞.

Then we have
φq(z) = φ0(z) −

∫ q

0
ψθ(z)dθ, z � 0. (6)

Let m(dz,dθ) be the measure on (0,∞) × [0, a] defined by

m([c, d] × [0, q]) = mq[c, d], q ∈ [0, a], d > c > 0.

LetW (ds,du) be a white noise on (0,∞)2 based on dsdu and Ñ(ds,dz,dθ,du) a
compensated Poisson random measure on (0,∞)2 × [0, a] × (0,∞) with
intensity dsm(dz,dθ)du. By the results in [17], for any μ ∈ F [0, a], the
stochastic equation

Yt(q) = μ(q) − bq

∫ t

0
Ys−(q)ds+ σ

∫ t

0

∫ Ys−(q)

0
W (ds,du)

+
∫ t

0

∫ ∞

0

∫
[0,q]

∫ Ys−(q)

0
zÑ(ds,dz,dθ,du) (7)

has a unique solution flow {Yt(q) : t � 0, q ∈ [0, a]}. For each q ∈ [0, a], the one-
dimensional process {Yt(q) : t � 0} is a CB-process with branching mechanism
φq. It was proved in [17] that there is a version of the flow which is increasing in
q ∈ [0, a]. Moreover, we can also regard {(Yt(q))t�0 : q ∈ [0, a]} as a path-valued
branching process. The solution flow of (7) also induces a càdlàg superprocess
{Yt : t � 0} with state spaceM [0, a]. Let f �→ Ψ(·, f) be the operator on C+[0, a]
defined by

Ψ(x, f) =
∫

[0,a]
f(x ∨ θ)hθdθ +

∫
[0,a]

dθ
∫ ∞

0
(1 − e−zf(x∨θ))nθ(dz). (8)

The superprocess {Yt : t � 0} has local branching mechanism φ0 and nonlocal
branching mechanism given by (8) (see [17, Theorem 6.2]). Then the transition
semigroup (Qt)t�0 of {Yt : t � 0} is defined by∫

M [0,a]
e−〈ν,f〉Qt(μ, dν) = exp{−〈μ, Vtf〉}, f ∈ C+[0, a], (9)



Limit theorems for flows of branching processes 67

where t �→ Vtf is the unique locally bounded positive solution of

Vtf(x) = f(x) −
∫ t

0
[φ0(Vsf(x)) − Ψ(x, Vsf)]ds, t � 0, x ∈ [0, a]. (10)

To study the scaling limit theorems of the discrete branching flows, we
need to introduce a metric on M [0, a]. Let {h0, h1, h2, . . .} be a countable dense
subset of {h ∈ C[0, a]+ : ‖h‖ � 1} with h0 ≡ 1. For convenience, we assume
that each hi is bounded away from zero. Then

{h0, h1, h2, . . .} ⊂ C[0, a]++.

Now, we define a metric ρ on M [0, a] by

ρ(μ, ν) =
∞∑
i=0

1
2i

(1 ∧ |〈μ, hi〉 − 〈ν, hi〉|), μ, ν ∈M [0, a].

It is easy to see that the metric is compatible with the weak convergence
topology of M [0, a]. In other words, we have μn → μ in M [0, a] if and only
if ρ(μn, μ) → 0. For ν ∈M [0, a], set

ehi
(ν) = e−〈ν,hi〉.

Theorem 1 The metric space (M [0, a], ρ) is a locally compact Polish (complete
and separable) space, and {ehi

: i = 0, 1, 2, . . .} strongly separates the points of
M [0, a], that is, for every ν ∈ M [0, a] and δ > 0, there exists a finite set
{ehi1

, ehi2
, . . . , ehik

} ⊂ {ehi
: i = 0, 1, 2, . . .} such that

inf
μ : ρ(μ,ν)�δ

max
1�j�k

|ehij
(μ) − ehij

(ν)| > 0.

Proof By [16, pp. 4, 7], we know that M [0, a] is separable and locally compact,
and thus, there is a complete metric on M [0, a] compatible with the weak
convergence topology. The following argument shows that the metric ρ defined
above is complete. Suppose that {μn}n�1 ⊂ M [0, a] is a Cauchy sequence
under ρ. Then for every m � 1, {〈μn, hm〉}n�1 is also a Cauchy sequence. We
denote its limit by Φ(hm). For f ∈ C[0, a]+ satisfying ‖f‖ � 1, let {hik}k�1 ⊂
{h0, h1, h2, . . .} be a sequence so that ‖hik − f‖ → 0 as k → ∞. For n � m � 1,
we have

lim sup
m,n→∞

|〈νn, f〉 − 〈νm, f〉|

� lim sup
m,n→∞

[|〈νn, f〉 − 〈νn, hik〉| + |〈νn, hik〉 − 〈νm, hik〉| + |〈νm, hik〉 − 〈νm, f〉|]

� 2Φ(1)‖f − hik‖.
Then letting k → ∞, we have

lim sup
m,n→∞

|〈νn, f〉 − 〈νm, f〉| = 0.
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By the linearity, the above relation holds for all f ∈ C[0, a]. Therefore, the limit

Φ(f) = lim
n→∞〈μn, f〉

exists for each f ∈ C[0, a]. Clearly, f → Φ(f) is a positive linear functional on
C[0, a]. By the Riesz representation theorem, there exists μ ∈M [0, a] such that
〈μ, f〉 = Φ(f) for every f ∈ C[0, a]. By the construction of Φ, we have μn → μ.
Therefore, ρ(μn, μ) → 0. That proves the first assertion of the theorem.

For any ν ∈M [0, a] and δ � 0, there exists an N0 ∈ N+ such that

∞∑
i=N0+1

1
2i
<
δ

2
.

Consider {h0, h1, . . . , hN0}. For any μ ∈M [0, a] satisfying ρ(μ, ν) � δ, we have

N0∑
i=0

1
2i

(1 ∧ |〈μ, hi〉 − 〈ν, hi〉|) � δ

2
,

and thus,
N0∑
i=0

(1 ∧ |〈μ, hi〉 − 〈ν, hi〉|) � δ

2
.

It follows that
|〈μ, hj〉 − 〈ν, hj〉| � δ

2N0

for some j = 0, 1, . . . , N0. Since

|e−x − e−y| = e−y|ey−x − 1| � e−y[(e|y−x| − 1) ∧ (1 − e−|y−x|)], x, y ∈ R,

we have
inf

μ : ρ(μ,ν)�δ
max

0�i�N0

|ehi
(μ) − ehi

(ν)|

� e−max0�i�N0
〈ν,hi〉[(e

δ
2N0 − 1) ∧ (1 − e−

δ
2N0 )]

> 0.

That proves the second assertion. �

3 Flows of independent branching processes

In this section, we consider some flows of independent Galton-Watson branching
processes. We shall study the scaling limit in the setting of superprocesses.
Then we derive the convergence of the finite-dimensional distributions of the
path-valued processes.

Let {gi : i = 0, 1, 2, . . .} be a family of probability generating functions.
For each i ∈ N, suppose that there is a Galton-Watson branching process
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(GW-process) (Xn(i))n�0 with offspring distribution given by gi. In addition,
we assume that (Xn(i))n�0, i = 1, 2, . . . , are mutually independent. It is well
known that for each i ∈ N, (Xn(i))n�0 is a discrete-time N-valued Markov chain
with n-step transition matrix Pn(j, k) defined by

∞∑
k=0

Pn(j, k)zk = (gn
i (z))j , |z| � 1, (11)

where gn
i (z) is defined by gn

i (z) = gi(gn−1
i (z)) successively with g0

i (z) = z.
Suppose that for each integer k � 1, we have a sequence of GW-processes

{(X(k)
n (i))n�0 : i � 0} with offspring distribution given by {g(k)

i }. Let γk be a
positive real sequence so that γk → ∞ increasingly as k → ∞. For m,n ∈ N,
define

X
(k)
n (m) =

m∑
i=0

X(k)
n (i),

and
Y

(k)
t (x) =

1
k
X

(k)
[γkt]([kx]), k = 1, 2, . . . ,

where [·] denotes the integer part. Then the increasing function x �→ Y
(k)
t (x)

induces a random measure Y (k)
t (dx) on [0,∞) so that Y (k)

t ([0, x]) = Y
(k)
t (x) for

x � 0. For convenience, we fix a constant a � 0 and consider the restriction of
{Y (k)

t : t � 0} to [0, a] without changing the notation. Clearly,

Y
(k)
0 =

1
k

[ka]∑
i=0

X
(k)
0 (i)δi/k

and

Y
(k)
t =

1
k

[ka]∑
i=0

X
(k)
[γkt](i)δi/k .

In view of (11), for each i � 0, given X
(k)
0 (i) = xi ∈ N, the conditional

distribution Q
[γkt]
i,k (xi/k, ·) of {k−1X

(k)
[γkt]

(i) : t � 0} on Ek = {0, 1/k, 2/k, . . .}
is determined by∫

Ek

e−λyQ
[γkt]
i,k

(xi

k
,dy

)
= exp

{
− xi

k
v
(k)
i (t, λ)

}
, (12)

where
v
(k)
i (t, λ) = −k log(g(k)

i )[γkt](e−λ/k).

Let Q(k)
μk denote the conditional law given

Y
(k)
0 = μk = k−1

[ka]∑
i=0

xiδi/k ∈Mk[0, a],
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where

Mk[0, a] :=
{
k−1

[ka]∑
i=0

xiδi/k : xi ∈ N, k−1

[ka]∑
i=0

xi <∞
}
.

For f ∈ B[0, a]+, from (12), we have

Q(k)
μk

exp{−〈Y (k)
t , f〉} = Q(k)

μk
exp

{
−

[ka]∑
i=0

1
k
X

(k)
[γkt](i)f

( i
k

)}

=
[ka]∏
i=1

∫
Ek

e−f(i/k)yQ
[γkt]
i,k

(xi

k
,dy

)

= exp
{
−

[ka]∑
i=0

xi

k
v
(k)
i

(
t, f

( i
k

))}

= exp{−〈μk, v
(k)(t, f)〉}, (13)

where x �→ v(k)(t, f)(x) is defined by

v(k)(t, f)(x) = v
(k)
[kx](t, f(x)).

For any x, z � 0, define

φk(x, z) = kγk[g
(k)
[kx](e

−z/k) − e−z/k]. (14)

For convenience of statement of the results, we formulate the following
condition.

Condition (3.A) For each a � 0, the sequence {φk(x, z)} is Lipschitz with
respect to z uniformly on [0,∞) × [0, a] and there is a continuous function
(x, z) �→ φ(x, z) such that φk(x, z) → φ(x, z) uniformly on [0,∞) × [0, a] as
k → ∞.

Before giving the limit theorem for the sequence of the rescaled processes,
we first introduce the limit process. By [16, Proposition 4.3], if Condition (3.A)
is satisfied, then the limit function φ has the representation

φ(x, z) = b(x)z +
1
2
c(x)z2 +

∫ ∞

0
(e−zu − 1 + zu)m(x,du), x, z � 0, (15)

where b is a bounded function on [0,∞) and c is a positive bounded function on
[0,∞). (u∧ u2)m(x,du) is a bounded kernel from [0,∞) to (0,∞). Conversely,
for any continuous function (x, z) �→ φ(x, z) given by (15), we can construct
a family of probability generating functions {g(k)

i : i = 0, 1, 2, . . .} such that
sequence (14) satisfies Condition (3.A) (see [16, p.93]).

For any l � 0, let Bl[0,∞)+ be the set of positive bounded functions on
[0,∞) satisfying ‖f‖ � l. By a modification of the proof of [16, Theorem 3.42],
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it is not hard to show that for each T � 0 and l � 0, v(k)(t, f)(x) converges
uniformly on the set [0, T ]× [0,∞)×Bl[0,∞)+ of (t, x, f) to the unique locally
bounded positive solution (t, x) �→ v(t, f)(x) of the evolution equation

v(t, f)(x) = f(x) −
∫ t

0
φ(x, v(s, f)(x))ds. (16)

Let {Yt : t � 0} be the superprocess with state space M [0, a] and transition
semigroup (Qt)t�0 defined by

∫
M [0,a]

e−〈ν,f〉Qt(μ, ν) = exp {−〈μ, v(t, f)〉} , f ∈ B[0, a]+. (17)

Using (16) and Gronwall’s inequality, one can see that x �→ v(t, f)(x) is
continuous on [0, a] for every f ∈ C[0, a]+. Then by [16, Proposition 3.1], it
is easy to see that v(t, f) ∈ C[0, a]++ for every f ∈ C[0, a]++. From this and
(17), it follows that (Qt)t�0 is a Feller semigroup. Note that if φ(x, z) = φ(z)
independent of x � 0, then (Qt)t�0 is the same transition semigroup as that
defined by (3) and (4). In this case, the corresponding superprocess can be
defined by the stochastic integral equation (2).

Let D([0,∞),M [0, a]) denote the space of càdlàg paths from [0,∞)
to M [0, a] furnished with the Skorokhod topology. The proof of the next
theorem is a modification of that of [16, Theorem 3.43].

Theorem 2 Suppose that Condition (3.A) is satisfied. Let {Yt : t � 0} be a
càdlàg superprocess with transition semigroup (Qt)t�0 defined by (16) and (17).
If Y (k)

0 converges to Y0 in distribution on M [0, a], then {Y (k)
t : t � 0} converges

to {Yt : t � 0} in distribution on D([0,∞),M [0, a]).

Proof For f ∈ C[0, a]++ and ν ∈M [0, a], set

ef (ν) = e−〈ν,f〉.

Clearly, the function ν �→ ef (ν) is continuous in ρ. Denote by D1 the linear span
of {ef : f ∈ C[0, a]++}. By Theorem 1, we have D1 is an algebra which strongly
separates the points of M [0, a]. Let C0(M [0, a]) be the space of continuous
functions F on M [0, a] such that F (νn) → 0 as νn([0, a]) → ∞. Then D1

is uniformly dense in C0(M [0, a]) by the Stone-Weierstrass theorem (see [11,
pp. 98, 99]). On the other hand, for any f ∈ C[0, a]++, since v(t, f) is bounded
away from zero and vk(t, f)(x) → v(t, f)(x) uniformly on [0,∞) for every t � 0,
we have vk(t, f) is also bounded away from zero for k sufficiently large. Without
loss of generality, we may assume vk(t, f) � c and v(t, f) � c for some c > 0.
Let Q(k)

t denote the transition semigroup of Y (k)
t . We get from (13) and (17)
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that, for any M � 0,

sup
ν∈Mk[0,a]

|Q(k)
t ef (ν) −Qtef (ν)|

= sup
ν∈Mk[0,a]

| exp{−〈ν, vk(t, f)〉} − exp{−〈ν, v(t, f)〉}|

� sup
〈ν,1〉�M, ν∈Mk[0,a]

| exp{−〈ν, vk(t, f)〉} − exp{−〈ν, v(t, f)〉}|

+ sup
〈ν,1〉>M, ν∈Mk[0,a]

| exp{−〈ν, vk(t, f)〉} − exp{−〈ν, v(t, f)〉}|

� sup
〈ν,1〉�M, ν∈Mk[0,a]

|〈ν, vk(t, f)〉 − 〈ν, v(t, f)〉| + sup
〈ν,1〉>M, ν∈Mk[0,a]

2e−〈ν,c〉

� M‖vk(t, f) − v(t, f)‖ + 2e−Mc.

Since M � 0 was arbitrary, we have

lim
k→∞

sup
ν∈Mk[0,a]

|Q(k)
t ef (ν) −Qtef (ν)| = 0

for every t � 0. Thus,

lim
k→∞

sup
ν∈Mk[0,a]

|Q(k)
t F (ν) −QtF (ν)| = 0

for every t � 0 and F ∈ C0(M [0, a]). By [9, pp. 226, 233, 234], we conclude that
{Y (k)

t : t � 0} converges to {Yt : t � 0} in distribution on D([0,∞),M [0, a]). �
Let {0 � a1 < a2 < · · · < an = a} be an ordered set of constants. Denote by

{Yt,ai : t � 0} and {Y (k)
t,ai

: t � 0} the restriction of {Yt : t � 0} and {Y (k)
t : t � 0}

to [0, ai], i = 1, 2, . . . , n, respectively. The following theorem is an extension of
Theorem 2.

Theorem 3 Suppose that Condition (3.A) is satisfied. If Y (k)
0,a converges to

Y0,a in distribution on M [0, a], then {(Y (k)
t,a1

, . . . , Y
(k)
t,an

) : t � 0} converges to
{(Yt,a1 , . . . , Yt,an) : t � 0} in distribution on D([0,∞),M [0, a1 ]×· · ·×M [0, an]).

Proof Let fi ∈ C[0, ai] for i = 1, . . . , n. By Theorem 2, we see that for every
1 � i � n, {〈Y (k)

t,ai
, fi〉 : t � 0} is tight inD([0,∞),R). Thus, {∑n

i=1〈Y (k)
t,ai
, fi〉 : t �

0} is tight in D([0,∞),R). Then the tightness criterion of [19] implies that
{(Y (k)

t,a1
, . . . , Y

(k)
t,an

) : t � 0} is tight in D([0,∞),M [0, a1 ] × · · · ×M [0, an]). Let

{(Zt,a1 , . . . , Zt,an) : t � 0} be a weak limit point of {(Y (k)
t,a1

, . . . , Y
(k)
t,an

) : t � 0}.
By an argument similar to the proof of [8, Theorem 5.8], one can show that
{(Zt,a1 , . . . , Zt,an) : t � 0} and {(Yt,a1 , . . . , Yt,an) : t � 0} have the same
distributions on D([0,∞),M [0, a1 ] × · · · × M [0, an]). That gives the desired
result. �
Corollary 1 Suppose that Condition (3.A) holds. Let {0 � a1 < a2 < · · · <
an = a} be an ordered set of constants. Let Yt(ai) := Yt[0, ai] and Y

(k)
t (ai) :=
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Y
(k)
t [0, ai] for every t � 0, i = 1, . . . , n, respectively. If (Y (k)

0 (a1), . . . , Y
(k)
0 (an))

converges to (Y0(a1), . . . , Y0(an)) in distribution on R
n
+, then {(Y (k)

t (a1), . . . ,
Y

(k)
t (an)) : t � 0} converges to {(Yt(a1), . . . , Yt(an)) : t � 0} in distribution on
D([0,∞),Rn

+).

4 Flows of interactive branching processes

In this section, we prove some limit theorems for a sequence of flows of
interactive branching processes, which leads to a superprocesses with local
branching and nonlocal branching. From those limit theorems, we derive the
convergence of the finite-dimensional distributions of the path-valued branching
processes.

Let g0 be a probability generating function, and let {hi : i = 1, 2, . . .} be
a family of probability generating functions. For each i � 1, define gi :=
g0h1 · · ·hi and suppose that

{ξn,j(i) : n = 0, 1, 2, . . . ; j = 1, 2, . . .},
{ηn,j(i) : n = 0, 1, 2, . . . ; j = 1, 2, . . .}

are two independent families of positive integer-valued i.i.d. random variables
with distributions given by gi and hi, respectively. Given another family of
positive integer-valued random variables {zi : i = 1, 2, . . .} independent of
{ξn,j(i) : i = 1, 2, . . .} and {ηn,j(i) : i = 1, 2, . . .}, we define inductively X0(0) =
z0 and

Xn+1(0) =
Xn(0)∑
j=1

ξn,j(0), n = 0, 1, 2, . . . . (18)

Suppose that {Xn(i) : n = 0, 1, 2, . . .} has been constructed for i = 0, 1, . . . ,m−
1, we define {Xn(m) : n = 0, 1, 2, . . .} by X0(m) = zm and

Xn+1(m) =
Xn(m)∑

j=1

ξn,j(m) +
Xn(m−1)∑

j=1

ηn,j(m), n = 0, 1, 2, . . . , (19)

where

Xn(m− 1) =
m−1∑
i=0

Xn(i), n = 0, 1, 2, . . . .

Intuitively, {Xn(m) : n = 0, 1, 2, . . .} is a GW-process with immigration, whose
offspring distribution is given by gm, immigration distribution is given by hm,
and immigration rate is {Xn(m− 1): n = 0, 1, 2, . . .}.

It is easy to show that for any m ∈ N, {(Xn(0),Xn(1), . . . ,Xn(m)) : n =
0, 1, 2, . . .} is a discrete-time N

m+1-valued Markov chain with one-step transition
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probability Q(x,dy) determined by

∫
Nm+1

e−〈λ,y〉Q(x,dy) =
m∏

i=0

[gi(e−λi)]xi [hi(e−λi)]
∑i−1

j=0 xj , λ, x ∈ N
m+1, (20)

where xi and λi denote the i-th component of x and λ, respectively.
Suppose that for each integer k � 1, we have two sequence of processes

{(X(k)
n (i))n�0 : i � 0} and {(X(k)

n (i))n�0 : i � 0} with parameters g(k)
0 and {h(k)

i :
i = 1, 2, . . .}. Suppose that γk is a positive real sequence such that γk → ∞
increasingly as k → ∞. Let [γkt] denote the integer part of γkt � 0. Define

Y
(k)
t (x) :=

1
k
X

(k)
[γkt]([kx]) =

1
k

[kx]∑
i=0

X
(k)
[γkt](i), k = 1, 2, . . . . (21)

Let Y (k)
t (dx) denote the random measure on [0,∞) induced by the random

function Y
(k)
t (x). We are interested in the asymptotic behavior of the

continuous-time process {Y (k)
t (dx) : t � 0} as k → ∞. Let h(k)

0 ≡ 1. For any
z � 0 and θ � 0, set

φ
(k)
θ (z) = kγk[g

(k)
[kθ](e

−z/k) − e−z/k] (22)

and
ψ

(k)
θ (z) = k2γk[1 − h

(k)
[kθ](e

−z/k)]. (23)

Let us consider the following set of conditions.

Condition (4.A) For every l � 0, the sequence {φ(k)
0 } is uniformly Lipschitz

on [0, l] and there is a function φ0 on [0,∞) such that φ(k)
0 (z) → φ0(z) uniformly

on [0, l] as k → ∞.

Condition (4.B) There is a function ψ on [0,∞)2 such that, for every l � 0,
ψ

(k)
θ (z) → ψθ(z) uniformly on [0, l]2 as k → ∞ and

sup
θ∈[0,a]

d
dz

ψθ(z)|z=0+ <∞.

Proposition 1 If Conditions (4.A) and (4.B) hold, then for every q � 0,
there is a branching mechanism φq such that φ(k)

q (z) → φq(z) uniformly on
[0, l] for every l � 0 as k → ∞. Moreover, the family of branching mechanisms
{φq : q � 0} is admissible with

∂

∂θ
φθ(z) = −ψθ(z).

Proof If Conditions (4.A) and (4.B) hold, then the limit function φ0 has the
representation (1) with (b,m) = (b0,m0) and ψθ has representation (5) (see [16,
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p. 76]). By the definition of g(k)
i , it is simple to check that, for every q � 0,

φ(k)
q (z) = kγk[g

(k)
0 (e−z/k) − e−z/k]

[kq]∏
i=1

h
(k)
i (e−z/k)

−
[kq]∑
i=1

kγk[1 − h
(k)
i (e−z/k)]e−z/k

[kq]∏
j=i+1

h
(k)
j (e−z/k). (24)

By elementary calculations, we have

[kq]∏
i=1

h
(k)
i (e−z/k) = exp

{
−

[kq]∑
i=1

1

k2γkζ
(k)
i

ψ
(k)
i/k(z)

}
,

where ζ(k)
i ∈ [h(k)

i (e−z/k), 1]. It is easy to show that
∏[kq]

i=1 h
(k)
i (e−z/k) converges

to 1 uniformly on [0, l] for every l � 0 if Condition (4.B) holds, and hence, for
each 1 � i � [kq],

∏[kq]
j=i+1 h

(k)
j (e−z/k) converges to 1 uniformly on [0, l] for every

l � 0. By letting k → ∞ in (24), we see that φ(k)
q (z) uniformly converge to a

function φq(z) on [0, l] for every l � 0 and (6) holds. Then the desired result
follows readily. �
Proposition 2 To each admissible family of branching mechanisms {φq : q �
0} with (∂/∂θ)φθ(z) = −ψθ(z), there correspond two sequences {φ(k)

0 } and
{ψ(k)

θ } in form of (22) and (23), respectively, such that Conditions (4.A) and
(4.B) are satisfied.

Proof By [16, p. 93], there is a sequence {φ(k)
0 } in form of (22) satisfying

Condition (4.A). By [16, p. 102], there is a family of probability generating
functions {h(k)

θ } such that

k[1 − h
(k)
θ (e−z/k)] → ψθ(z)

uniformly on [0, l]2 for every a � 0 as k → ∞. Let

h̃
(k)
θ (z) = 1 +

1
kγk

[h(k)
θ (z) − 1], θ � 0, |z| � 1.

Clearly, {h̃(k)
θ : θ � 0} is a family of probability generating functions and

k2γk[1 − h̃
(k)
θ (e−z/k)] → ψθ(z)

uniformly on [0, l]2 for every l � 0 as k → ∞. For each k � 1, define

h
(k)
i = h̃

(k)
i/k, i = 1, 2, . . . .
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Then by the continuity of (θ, z) �→ ψθ(z), we get the result. �

Given a constant a � 0, denote by {Y (k)
t,a : t � 0} the restriction of {Y (k)

t : t �
0} to [0, a]. Then it is easy to see

Y
(k)
0,a =

1
k

[ka]∑
i=0

X
(k)
0 (i)δi/k, Y

(k)
t,a =

1
k

[ka]∑
i=0

X
(k)
[γkt](i)δi/k.

Then {Y (k)
t,a : t � 0} is a measure-valued Markov process with state space

Mk[0, a]. From (20), for

ν = k−1

[ka]∑
i=0

x
(k)
i δi/k ∈Mk[0, a]

and f ∈ C[0, a]++, one can see that the (discrete) generator Lk of {Y (k)
t,a : t � 0}

is given by

Lke−〈ν,f〉 = γk

[ [ka]∏
i=0

g
(k)
i (e−f(i/k)/k)xih

(k)
i (e−f(i/k)/k)

∑i−1
j=0 xj − e−〈ν,f〉

]

= e−〈ν,f〉γk

[
exp

{ [ka]∑
i=0

log
(
g
(k)
i (e−f(i/k)/k)xih

(k)
i (e−f(i/k)/k)

∑i−1
j=0 xj

)

+ 〈ν, f〉
}
− 1

]
= e−〈ν,f〉γk[exp{αk + βk} − 1], (25)

where

αk =
[ka]∑
i=0

xi

[
log g(k)

i (e−f(i/k)/k) +
f(i/k)
k

]
,

βk =
[ka]∑
i=0

i−1∑
j=0

xj log h(k)
i (e−f(i/k)/k).

By the definition of g(k)
i , we have

αk =
[ka]∑
i=0

xi

[
log g(k)

0 (e−f(i/k)/k) +
i∑

j=0

log h(k)
j (e−f(i/k)/k) +

f(i/k)
k

]

=
[ka]∑
i=0

xi

[
log g(k)

0 (e−f(i/k)/k) +
f(i/k)
k

]
+

[ka]∑
i=0

i∑
j=0

xi log h(k)
j (e−f(i/k)/k).
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It follows that

αk + βk =
[ka]∑
i=0

xi

[
log g(k)

0 (e−f(i/k)/k) +
f(i/k)
k

]
+

[ka]∑
i=0

i∑
j=0

xi log h
(k)
j (e−f(i/k)/k)

+
[ka]∑
i=0

i−1∑
j=0

xj log h(k)
i (e−f(i/k)/k)

=
[ka]∑
i=0

xi

[
log g(k)

0 (e−f(i/k)/k) +
f(i/k)
k

]
+

[ka]∑
i=0

i∑
j=0

xi log h
(k)
j (e−f(i/k)/k)

+
[ka]∑
i=0

[ka]−1∑
j=i+1

xi log h
(k)
j (e−f(j/k)/k)

=
[ka]∑
i=0

xi

[
log g(k)

0 (e−f(i/k)/k) +
f(i/k)
k

]
+

[ka]∑
i=0

[ka]∑
j=0

xi log h
(k)
j (e−f( i∨j

k
)/k)

=
1
γk

[ [ka]∑
i=0

xi

kζ
(k)
i

φ
(k)
0

(
f
( i
k

))
−

[ka]∑
i=0

xi

k

( [ka]∑
j=0

1

kζ
(k)
i,j

ψ
(k)
j/k

(
f
(i ∨ j

k

)))]
,

where ζ(k)
i is between e−f(i/k)/k and g(k)

0 (e−f(i/k)/k), ζ(k)
i,j ∈ [h(k)

j (e−f( i∨j
k

)/k), 1].

Clearly, both ζ
(k)
i and ζ

(k)
i,j converge to 1 uniformly as k → ∞ if Conditions

(4.A) and (4.B) hold. Then the above equality implies

αk + βk =
1
γk

[〈ν, φ(k)
0 (f(·))〉 − 〈ν,Ψ(k)(·, f)〉 + o(1)], (26)

where

Ψ(k)(·, f) =
[ka]∑
j=0

1
k
ψ

(k)
j/k

(
f
(
· ∨ j
k

))
.

Let {Yt,a : t � 0} be the càdlàg superprocess with transition semigroup
(Qt)t�0 defined by (9) and (10).

Theorem 4 Suppose that Conditions (4.A) and (4.B) are satisfied. If Y (k)
0,a

converges to Y0,a in distribution on M [0, a], then {Y (k)
t,a : t � 0} converges to

{Yt,a : t � 0} in distribution on D([0,∞),M [0, a]).

Proof As in the proof of [15, Theorem 2.1], we shall prove the convergence
of the generators. Let D1 be the algebra as defined in Theorem 2. For f ∈
C[0, a]++, let

Le−〈ν,f〉 = e−〈ν,f〉[〈ν, φ0(f(·))〉 − 〈ν,Ψ(·, f)〉], ν ∈M [0, a],
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and extend the definition of L to D1 by linearity. By (9), one can check that L is
a restriction of strong generator of (Qt)t�0; see (1.10) of [9, p. 8]. Note also that
L := {(f, Lf) : f ∈ D1} is a linear space of C0(M [0, a]) × C0(M [0, a]). On the
other hand, letting f(x) = λ in (9) and (10), we have the function λ �→ Vt(λ)
is strictly increasing on [0,∞) for every t � 0 (see [16, p. 58]). Therefore,
Vt(λ) > 0 for every λ > 0 and t � 0. In view of (9), for any f ∈ C[0, a]++, we
have Vtf ∈ C[0, a]++ for every t � 0. Then D1 is invariant under (Qt)t�0, which
is a core of the strong generator of (Qt)t�0 (see [9, p. 17]). In other words, the
closure of L generates (Qt)t�0 uniquely (see [9, pp. 15, 17]). Based on (25) and
(26), one can see

lim
k→∞

sup
ν∈Mk[0,a]

|Lke−〈ν,f〉 − Le−〈ν,f〉| = 0

for every f ∈ C[0, a]++, which implies

lim
k→∞

sup
ν∈Mk[0,a]

|LkF (ν) − LF (ν)| = 0

for every F ∈ D1. By [9, pp. 226, 233, 234], we conclude that {Y (k)
t,a : t � 0}

converges to the immigration superprocess {Yt,a : t � 0} in distribution on
D([0,∞),M [0, a]). �

Let {0 � a1 < a2 < · · · < an = a} be an ordered set of constants. Denote by
{Yt,ai : t � 0} and {Y (k)

t,ai
: t � 0} the restriction of {Yt : t � 0} and {Y (k)

t : t � 0}
to [0, ai], respectively. Let

Yt(ai) := Yt[0, ai], Y
(k)
t (ai) := Y

(k)
t [0, ai]

for every t � 0, i = 1, 2, . . . , n. By arguments similar to those in Section 3, we
have the following result.

Theorem 5 Suppose that Conditions (4.A) and (4.B) are satisfied. If Y (k)
0,a

converges to Y0,a in distribution on M [0, a], then {(Y (k)
t,a1

, . . . , Y
(k)
t,an

) : t � 0}
converges to {(Yt,a1 , . . . , Yt,an) : t � 0} in distribution on D([0,∞),M [0, a1] ×
· · · ×M [0, an]).

Corollary 2 Suppose that Conditions (4.A) and (4.B) are satisfied. If
(Y (k)

0 (a1), . . . , Y
(k)
0 (an)) converges to (Y0(a1), . . . , Y0(an)) in distribution on R

n
+,

then {(Y (k)
t (a1), . . . , Y

(k)
t (an)) : t � 0} converges to {(Yt(a1), . . . , Yt(an)) : t �

0} in distribution on D([0,∞),Rn
+).
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