
Exact convergence rate in the central limit theorem for a

branching random walk with a random environment in time∗

Zhiqiang Gao†, Quansheng Liu ‡

May 11, 2014

Abstract

In this paper, we obtain the exact convergence rate for the distribution of a supercrit-
ical branching random walk with an environment in time. This generalizes the results by
Chen(2001) on the case with fixed environment. Moreover, in contrast with Chen(2001), the
weaker moments condition on the underlying branching system is assumed here.
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1 Introduction

In this article, we will consider the convergence rate in the central limit theorem for a branching
random walk with a random environment in time. In this model, the system is governed by the
branching properties and random walks of the particles. More precisely, the offspring distribution
and the motion law of each particle depend on its generation. Comparing with the classical
branching random walks, the model presented here might be more approximate to the reality. In
the classical branching random walk, the point processes indexed by the particles u, formulated
by the number of its children and their displacements, have a fixed constant distribution for all
particles u; here, these distributions may vary from generation to generation according to a random
environment, just as in the case of a branching process in a random environment introduced in
[2, 3, 24]. In other words, the distributions themselves may be realizations of a stochastic process,
rather than being fixed. It is different to the usual branching random walk in a random environment
(see e.g. [5, 13]), in which the authors considered the case where the offspring distribution of a
particle situated at z ∈ R depends on a random environment indexed by z, while the moving
mechanism is controlled by a fixed deterministic law.

For the model presented here, Biggins and Kyprianou (2004, [8]) showed the convergence of the
natural martingale arising therein and Liu(2007,[20]) surveyed more limit theorems. Further, in
[12], the authors showed the central limit theorems for the counting measure Zn(·) which counts
the number of particles of generation n situated in a given set for this model. Here we consider the
problem on the convergence rate in the central limit theorems for the counting measure Zn(·). For
the classical branching random walk, Révész(1994,[23]) studied this problem and gave a conjecture
on the exact convergence rate, which is proved by Chen(2001,[9]). In this article, we shall extend
the work of Chen(2001,[9]) to the random environment case under the weaker moment condition
for the underlying branching mechanism.

The main results will be stated in Section 2, while their proofs will be given in Sections 3.
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2 Description of the model and the main results

2.1 Description of the model

A random environment in time ξ = (ξn) is formulated as a sequence of random variables inde-
pendent and identically distributed with values in some measurable space (Θ,F). Each realization
of ξn corresponds to two probability distributions p(ξn) and Gξn , where p(ξn) = {pk(ξn) : k ∈ N}
is a probability law on N and Gξn a probability law on R. Without loss of generality, we
can take ξn as coordinate functions defined on the product space (ΘN,F⊗N), equipped with a
probability law τ which is invariant and ergodic under the usual shift transformation θ on ΘN:
θ(ξ0, ξ1, · · · ) = (ξ1, ξ2, · · · ) .

When the environment ξ = (ξn) is given, the process can be described as follows. The process
begins at time 0 with one initial particle ∅ of generation 0 located at S∅ = 0 ∈ R; at time 1,
it is replaced by N = N∅ new particles of generation 1, located at Li = L∅i, 1 ≤ i ≤ N, where
N is of distribution p(ξ0) and each Li is an independent copy of the generic random variable
Hξ0 with the distribution Gξ0 , given the environment ξ. In general, each particle u = u1...un of
generation n is replaced at time n+1 by Nu new particles of generation n+1, with displacements
Lu1, Lu2, · · · , LuNu , so that the i-th child is located at

Sui = Su + Lui,

where Nu is of distribution p(ξn) and each Lui is an independent copy of the generic random

variable L̂ξn with the distribution Gξn , given the environment ξ. All the random variables Nu and
Lu, indexed by all finite sequences u of positive integers, are independent of each other, given the
environment ξ. We abbreviate L̂ξn (resp. Gξn) as L̂n (resp. Gn) in the rest of this paper.

Let (Γ,Pξ) be the probability space under which the process is defined when the environment
ξ is fixed. As usual, Pξ is called quenched law. The total probability space can be formulated as
the product space (Γ×ΘN,P), where P = Pξ ⊗ τ in the sense that for all measurable and positive
function g, we have ∫

gdP =

∫∫
g(y, ξ)dPξ(y)dτ(ξ),

(recall that τ is the law of the environment ξ). The probability P is called annealed law. The
quenched law Pξ may be viewed as the conditional probability of the annealed law P given ξ. We
will use Eξ to denote the expectation with respect to Pξ. Other expectations will be denoted simply
E (there will be no confusion according to the context).

Let T be the genealogical tree with {Nu} as defining elements. By definition, we have: (a)
∅ ∈ T; (b) ui ∈ T implies u ∈ T; (c) if u ∈ T, then ui ∈ T if and only if 1 ≤ i ≤ Nu. Let
Tn = {u ∈ T : |u| = n} be the set of particles of generation n, where |u| denotes the length of the
sequence u and represents the number of generation to which u belongs.

2.2 The main results

Let Zn(·) be the counting measure of particles of generation n: for B ⊂ R,

Zn(B) =
∑
u∈Tn

1B(Su).

By convention, we will write Zn = Zn(R). Then {Zn} constitutes a branching process in a random
environment (see e.g. [2, 3, 24]). For n ≥ 0, define

mn = m(ξn) =

∞∑
k=1

kpk(ξn), Πn = m0 · · ·mn−1, Π0 = 1.

Throughout the paper, we will assume the following conditions

E lnm0 > 0 and E

(
1

m0

∞∑
k=2

k(ln k)1+λpk(ξ0)

)
< ∞ with λ > 3. (2.1)
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Under these conditions, the underlying branching process is supercritical which means that the
number of the particles tends to infinity with positive probability. Without loss of generality and
for simplicity, we will always assume that

P(N ≥ 1) = 1. (2.2)

Moreover, it is well known that in supercritical case, the normalized sequence

Wn = Π−1
n Zn, n ≥ 1

constitute a martingale with respect to the filtration Fn defined by: F0 = {∅,Ω}, Fn = σ(ξ,Nu :
|u| < n), for n ≥ 1. Under (2.1), the limit

W = lim
n

Wn (2.3)

exists a.s. with EW = 1 (see for example [3]); by (2.2), W > 0 a.s.
For n ≥ 0, define

ln = ln(ξ) = EξL̂n, σ2
n = σ2

n(ξ) = VarξL̂n, αn = Eξ

(
L̂n − ln

)3
, vn(t) = Eξe

it(L̂n−ln),

ℓn = ℓn(ξ) =

n−1∑
k=0

lk, s2n = s2n(ξ) =

n−1∑
k=0

σ2
k, M (3)

n =

n−1∑
k=0

αk.

We also need some conditions on the motion of the particles: for η = min{2λ, 3
2 (1 + λ)},

E
(
L̂0 − l0

)η
< ∞ and lim sup

n→∞
sup
|t|≥T

{
1

n

n−1∑
k=0

|vk(t)|

}
< 1 a.s. (2.4)

Let {Vn} be a sequence of random variables defined by

Vn =
1

Πn

∑
u∈Tn

(Su − ℓn).

Then we can state our main result as following:

Theorem 2.1. Assume that the conditions (2.1)∼(2.4) hold. Then limn Vn = V a.s. for some
random variable V , and for t ∈ R,

√
n
[
Π−1

n Zn(ℓn + snt)−Φ(t)W
]

n→∞−−−−→ 1

6
Eα0(Eσ2

0)
− 3

2 (1− t2)ϕ(t)W − (Eσ2
0)

− 1
2ϕ(t)V a.s., (2.5)

where Zn(x) = Zn((−∞, x]) for x ∈ R and ϕ(t) = 1√
2π

e−t2/2,Φ(t) =
∫ t

−∞ ϕ(x)dx.

Remark 2.2. Compared with Chen(2001, [9]), the weaker moment condition on the underlying
branching mechanism is assumed. Hence even under the constant environment, the result here
considerably generalize that in[9].

We conjecture that it is possible to relax the moment condition on the reproduction law of the
population.

3 Proof of Theorem 2.1

We first introduce some notation which will be used in the sequel.
For simplicity and without loss of generality, we will always assume that ln = 0 hereafter (if

not so, we only need to replace Lui by Lui − ln).
The following σ-fields will be often used:

D0 = {∅,Ω}, Dn = σ(ξ,Nu, Lui : i ≥ 1, |u| < n), for n ≥ 1

I0 = {∅,Ω}, In = σ(ξk, Nu, Lui : k < n, i ≥ 1, |u| < n) for n ≥ 1.
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We will use the following conditional probabilities and conditional expectations:

Pξ,n(·) = Pξ(·|Dn); Eξ,n(·) = Eξ(·|Dn); Pn(·) = P(·|In), En(·) = E(·|In).

As usual, we write N∗ = {1, 2, 3, · · · } and denote by

U =
∞∪

n=0

(N∗)n

the set of all finite sequences, where (N∗)0 = {∅} contains the null sequence ∅.
For all u ∈ U , let T(u) be the shifted tree of T at u with defining elements {Nuv}: we have 1)

∅ ∈ T(u), 2) vi ∈ T(u) ⇒ v ∈ T(u) and 3) if v ∈ T(u), then vi ∈ T(u) if and only if 1 ≤ i ≤ Nuv.
Define Tn(u) = {v ∈ T(u) : |v| = n}. Then T = T(∅) and Tn = Tn(∅).

3.1 A key decomposition

For u ∈ (N∗)k(k ≥ 0) and n ≥ 1, let Su be the position of u and write

Zn(u,B) =
∑

v∈Tn(u)

1B(Suv − Su).

Then the law of Zn(u,B) under Pξ is the same as that of Zn(B) under Pθkξ. Define

Wn(u,B) = Zn(u,B)/Πn(θ
kξ), Wn(u, t) = Wn(u, (−∞, t]),

Wn(B) = Zn(B)/Πn, Wn(t) = Wn((−∞, t]).

By definition, we see Πn(θ
kξ) = mk · · ·mk+n−1, Zn(B) = Zn(∅, B), Wn(B) = Wn(∅, B), Wn =

Wn(R).
The following decomposition will play a key role in our approach: for k ≤ n,

Zn(B) =
∑
u∈Tk

Zn−k(u,B − Su). (3.1)

Remark that by our definition, for u ∈ Tk,

Zn−k(u,B − Su) =
∑

v1···vn−k∈Tn−k(u)

1B(Suv1···vn−k
)

represents number of the descendants of u at time n situated in B.
For each n, we choose an integer kn < n as follows. Let β be a real number such that

max { 3
(2λ) ,

2
(1+λ)} < β < 1

2 and set kn = [nβ ]. Let tn = snt for t ∈ R and n ≥ 1. Then on the basis

of (3.1), the following decomposition will hold:

Π−1
n Zn(tn)− Φ(t)W = An +Bn + Cn, (3.2)

where

An =
1

Πkn

∑
u∈Tkn

[Wn−kn(u, tn − Su)− Eξ,kn(Wn−kn(u, tn − Su))] ,

Bn =
1

Πkn

∑
u∈Tkn

[Eξ,kn(Wn−kn(u, tn − Su))− Φ(t)]

Cn = (Wkn −W )Φ(t).

Here we remind that the random variables Wn−kn(u, tn−Su) are independent of each other under
the conditional probability Pξ,kn .
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3.2 Convergence of the martingale {Vn}
In this subsection, we shall prove the following lemma, which ensures the convergence of the
martingale {Vn} defined before.

Lemma 3.1. Under the conditions of Theorem 2.1, {Vn} is a martingale with respect to {Dn}
and converges a.s. to some random variables V .

Proof. First we prove that {Vn,Dn} is a martingale. This fact follows from that

Eξ,nVn+1 = Eξ,n

(
1

Πn+1

∑
u∈Tn+1

Su

)
=

1

Πn+1
Eξ,n

( ∑
u∈Tn

Nu∑
i=1

(Su + Lui)

)

=
1

Πn+1

∑
u∈Tn

Eξ,n

(
Nu∑
i=1

(Su + Lui)

)

=
1

Πn+1

∑
u∈Tn

mnSu = Vn.

Now we go to prove the convergence of the martingale. We will do it by showing that
∑∞

n=1(Vn+1−
Vn) < +∞ a.s.

For convenience, we shall use the following notation:

Xu = Su

(
Nu

m|u|
− 1

)
+

Nu∑
i=1

Lui

m|u|
, X ′

u = Xu1{|Xu|≤Π|u|};

In = Vn+1 − Vn =
1

Πn

∑
u∈Tn

Xu, I ′n =
1

Πn

∑
u∈Tn

X ′
u.

For u ∈ Tn, Let X̂n and N̂n be the generic random variables of Xu and Nu respectively, i.e. X̂n

(N̂n) has the same distribution with Xu (Nu).
We start the proof by proving the following inequality:

1

(lnΠn)1+λ
Eξ|X̂n|(ln+ |X̂n|)1+λ ≤ C1

(lnΠn)1+λ
+

C2n+ C3

(lnΠn)1+λ
Eξ

N̂n

mn
(ln N̂n)

1+λ, (3.3)

where C1, C2, C3 are constants depending on ξ.
For u ∈ Tn, observe that

|Xu| ≤ |Su|
(
1 +

Nu

m|u|

)
+

∣∣∣∑Nu

i=1 Lui

∣∣∣
m|u|

,

ln+ |Xu| ≤ 2 + ln+ |Su|+ lnNu + ln+

∣∣∣∣∣ 1

m|u|

Nu∑
i=1

Lui

∣∣∣∣∣ ,
(ln+ |Xu|)1+λ ≤ 4λ

(
21+λ + (ln+ |Su|)1+λ + (lnNu)

1+λ +

(
ln+

∣∣∣∣∣ 1

m|u|

Nu∑
i=1

Lui

∣∣∣∣∣
)1+λ

)
.

(We have used the elementary inequalities : for x, y > 0, ln+(x+y) ≤ 1+ln+ x+ln+ y, ln(1+x) ≤
1 + ln+ x and the facts Nu ≥ 1 and m|u| ≥ 1 ).

Then we get that

4−λ|Xu|(ln+ |Xu|)1+λ ≤
8∑

i=1

Ji,

with J1 = 21+λ|Su|
(
1 +

Nu

m|u|

)
, J2 = |Su|(ln+ |Su|)1+λ

(
1 +

Nu

m|u|

)
,

J3 = |Su|
(
1 +

Nu

m|u|

)
(lnNu)

1+λ, J4 = |Su|
(
1 +

Nu

m|u|

)(
ln+

∣∣∣∣∣ 1

m|u|

Nu∑
i=1

Lui

∣∣∣∣∣
)1+λ

,
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J5 =
21+λ

m|u|

∣∣∣∣∣
Nu∑
i=1

Lui

∣∣∣∣∣ , J6 =
(ln+ |Su|)1+λ

m|u|

∣∣∣∣∣
Nu∑
i=1

Lui

∣∣∣∣∣ , J7 =
(lnNu)

1+λ

m|u|

∣∣∣∣∣
Nu∑
i=1

Lui

∣∣∣∣∣ ,
J8 =

1

m|u|

∣∣∣∣∣
Nu∑
i=1

Lui

∣∣∣∣∣
(
ln+

∣∣∣∣∣ 1

m|u|

Nu∑
i=1

Lui

∣∣∣∣∣
)1+λ

.

There exists a constant Kξ such that for u ∈ Tn,

Eξ|Su| ≤
n∑

j=1

Eξ|L̂j | ≤ Kξn,Eξ|Su|2 =

n∑
j=1

Eξ|L̂j |2 ≤ Kξn

because

lim
n→∞

1

n

n∑
j=1

Eξ|L̂j |q = E|L̂1|q < ∞, q = 1, 2.

Observe that for ∀ε > 0,

P
(
n−1/2Eξ|L̂n| > ε

)
≤ 1

n2
E(Eξ|L̂n|)4 ≤ 1

n2
E
(
Eξ|L̂n|4

)
=

1

n2
E|L̂n|4.

Then n−1/2Eξ|L̂n| → 0 a.s. and hence n−1/2Eξ|L̂n| ≤ Kξ.
By our assumptions on environment, we see that Su, Nu and Lui are mutually independent

under Pξ. On the basis of the above estimates, we have the following inequalities: for u ∈ Tn,

EξJ1 = 21+λEξ|Su|Eξ

(
1 +

Nu

m|u|

)
≤ Kξn;

EξJ2 ≤ Eξ(|Su|2 + |Su|) ≤ Kξn;

EξJ3 ≤ Eξ|Su|Eξ

(
1 +

Nu

m|u|

)
(lnNu)

1+λ ≤ Kξn

(
1 + Eξ

N̂n

mn
(ln N̂n)

1+λ

)
;

EξJ4 ≤ Eξ|Su|Eξ

(
1 +

Nu

m|u|

)(
ln+

∣∣∣∣∣ 1

m|u|

Nu∑
i=1

Lui

∣∣∣∣∣
)1+λ

(then by the concavity of (lnx)1+λ)

≤ (Kξn)Eξ

(
1 +

Nu

m|u|

)(
ln+

1

m|u|

Nu∑
i=1

Eξ{|Lui|
∣∣Nu}

)1+λ

≤ Kξn

(
Kξn

1/2 + Eξ
Nu

m|u|
(lnNu)

1+λ

)
= Kξn

3/2 +KξnEξ
N̂n

mn
(ln N̂n)

1+λ;

EξJ5 ≤ 21+λEξ|L̂n| ≤ Kξn
1/2;

EξJ6 = Eξ(ln
+ |Su|)1+λEξ

1

m|u|

∣∣∣∣∣
Nu∑
i=1

Lui

∣∣∣∣∣
≤ (ln+ Eξ|Su|)1+λEξ|L̂n| ≤ (ln+(Kξn))

1+λKξn ≤ Kξn(lnn)
1+λ;

EξJ7 ≤ EξL̂nEξ
Nu

m|u|
(lnNu)

1+λ = Kξn
1/2Eξ

N̂n

mn
(ln N̂n)

1+λ;

EξJ8 ≤ Eξ

(∑Nu

i=1 Lui

)2
m|u|

≤ Eξ|L̂n|2 ≤ Kξn.

Hence we get that for u ∈ Tn,

Eξ|X̂n|(ln+ |X̂n|)1+λ = Eξ|Xu|(ln+ |Xu|)1+λ ≤ Kξn
3/2

(
1 + Eξ

N̂n

mn
(ln N̂n)

1+λ

)
. (3.4)
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Now we go to prove the
∑∞

n=0 In < ∞ a.s. Observe that

∞∑
n=0

In =
∞∑

n=0

(In − I ′n) +
∞∑

n=0

(I ′n − Eξ,nI
′
n) +

∞∑
n=0

Eξ,nI
′
n.

We shall prove that each of the three series on the right hand side converges.
For the first series, we see that

Eξ|In − I ′n| = Eξ

∣∣∣∣∣ 1

Πn

∑
u∈Tn

Xu1{|Xu|>Πn}

∣∣∣∣∣
≤ Eξ

{
1

Πn

∑
u∈Tn

Eξ,n(|Xu|1{|Xu|>Πn})

}
= Eξ

(
|X̂n|1{|X̂n|>Πn}

)
≤ 1

(lnΠn)1+λ
Eξ|X̂n|(ln+ |X̂n|)1+λ

≤ Kξn
1/2

(lnΠn)1+λ

(
1 + Eξ

N̂n

mn
(ln N̂n)

1+λ

)
.

As limn→∞
lnΠn

n = E lnm0 > 0 a.s., for a given constant δ1 satisfying 0 < δ1 < E lnm0 and for
n large, lnΠn > δ1n. Hence for n large,

Eξ|In − I ′n| ≤
Kξ

(δ1)1+λnλ− 1
2

(
1 + Eξ

N̂n

mn
(ln N̂n)

1+λ

)
.

Observe that for λ > 3/2,

E
∞∑

n=1

1

nλ− 1
2

Eξ
N̂n

mn
(ln N̂n)

1+λ =

∞∑
n=1

1

nλ− 1
2

E
N

m0
(lnN)1+λ < ∞.

Then it follows that
∞∑

n=1

1

nλ− 1
2

Eξ
N̂n

mn
(ln N̂n)

1+λ < ∞ a.s.

Hence a.s.

Eξ

∣∣∣∣∣
∞∑

n=0

(In − I ′n)

∣∣∣∣∣ ≤
∞∑

n=0

Eξ|In − I ′n| < ∞,

and it follows that
∑∞

n=0(In − I ′n) is convergent a.s.
For the series

∑∞
n=0 Eξ,nI

′
n, we use the fact Eξ,nIn = 0. Then we have

Eξ

∣∣∣∣∣
∞∑

n=0

Eξ,nI
′
n

∣∣∣∣∣ = Eξ

∣∣∣∣∣
∞∑

n=0

Eξ,n(In − I ′n)

∣∣∣∣∣ ≤
∞∑

n=0

Eξ|In − I ′n| < ∞.

And the a.s. convergence of the series
∑∞

n=0 Eξ,nI
′
n follow.

Now we go to prove that
∞∑

n=0

(I ′n − Eξ,nI
′
n) < ∞ a.s. (3.5)

By the convergence of L2 bounded martingale (see e.g. [10, P. 251, Ex. 4.9]), we only need to
show the convergence of the series:

∑∞
n=0 Eξ(I

′
n − Eξ,nI

′
n)

2.
Notice that for a positive constant δ2,

Eξ(I
′
n − Eξ,nI

′
n)

2 = Eξ

(
1

Πn

∑
u∈Tn

(Xu − Eξ,nXu)

)2
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= Eξ

(
1

Π2
n

∑
u∈Tn

Eξ,n(X
′
u − Eξ,nX

′
u)

2

)

≤ Eξ
1

Π2
n

∑
u∈Tn

Eξ,nX
′2
u =

1

Πn
Eξ(X̂

2
n1{|X̂n|≤Πn})

=
1

Πn
Eξ

(
X̂2

n1{|X̂n|≤Πn}1{|X̂n|≤δ2} + X̂2
n1{|X̂n|≤Πn}1{|X̂n|>δ2}

)
≤ δ22

Πn
+

1

Πn
Eξ

X̂2
nΠn(lnΠn)

−(1+λ)

|X̂n|(ln+ |X̂n|)−(1+λ)

≤ δ22
Πn

+
Eξ|X̂n|(ln+ |X̂n|)1+λ

(lnΠn)1+λ

Then by the above arguments, we see that the series
∑∞

n=0 Eξ(I
′
n −Eξ,nI

′
n)

2 < ∞ and the desired
convergence of (3.5) follows.

Combining the above arguments, we see that the martingale Vn converges to the limit V =∑∞
n=1(Vn+1 − Vn).

3.3 Proof of the main theorem

By virtue of the decomposition (3.2), We shall divide the proof of the main theorem into the
following lemmas.

Lemma 3.2. Under the hypothesis of Theorem 2.1, a.s.

√
nAn

n→∞−−−−→ 0. (3.6)

Lemma 3.3. Under the hypothesis of Theorem 2.1, a.s.

√
nBn

n→∞−−−−→ 1

6
Eα0(Eσ2

0)
− 3

2 (1− t2)ϕ(t)W − (Eσ2
0)

− 1
2ϕ(t)V (3.7)

Lemma 3.4. Under the hypothesis of Theorem 2.1, a.s.

√
nCn

n→∞−−−−→ 0 a.s. (3.8)

Now we go to prove the lemmas subsequently.

Proof of Lemma 3.2. For ease of the notations, we will use the following notations. For |u| = n, we
denote Xn,u = Wn−kn(u, tn−Su)−Eξ,knWn−kn(u, tn−Su). Then we see that |Xn,u| ≤ Wn−kn +1.

We introduce the following notations:

Yn =
1

Zkn

∑
u∈Tkn

Xn,u,

X̄n,u = Xn,u1{|Xn,u|<Zkn},

Ȳn =
1

Zkn

∑
u∈Tkn

X̄n,u.

Using the fact that Wn converges to W > 0 a.s., then to prove Lemma 3.2, we only need to prove
that √

nYn
n→∞−−−−→ 0 a.s. (3.9)

We will use the extended Borel-Cantelli Lemma. We can obtain the required result once we prove
that ∀ε > 0,

∞∑
n=1

Pkn(|
√
nYn| > ε) < ∞. (3.10)

Notice that

Pkn(|Yn| >
ε√
n
)

8



≤ Pkn(Yn ̸= Ȳn) + Pkn(|Ȳn − Eξ,kn Ȳn| ≥
ε√
n
) + Pkn(|Eξ,kn | >

ε√
n
).

We will proceed the proof in four steps.
Step 1 We first prove that

∞∑
n=1

Pkn(Yn ̸= Y n) < ∞. (3.11)

We need the following result:

Lemma 3.5. ([19]) Assume that (2.1) and (2.2) hold, then

E(W ∗ + 1)(ln(W ∗ + 1))λ < ∞. (3.12)

Furthermore, for β > 1
λ and {rn} with lim infn→∞

ln rn
nβ > 0,

∞∑
n=1

E
[
(W ∗ + 1)1{W∗+1≥rn}

]
< +∞. (3.13)

We observe that

Pkn(Yn ̸= Y n) ≤
[
E
(
(Wn−kn + 1)1{Wn−kn+1≥rn}

)]
rn=Zkn

≤
[
E
(
(W ∗ + 1)1{W∗+1≥rn}

)]
rn=Zkn

.

Notice that rn = Zkn satisfies the condition lim infn→∞
ln rn
nβ > 0, because Zkn/πkn → W > 0 a.s.,

(πn)
1
n → exp{E lnm0} a.s. and kn ∼ nβ . From this and Lemma 3.5, we obtain that

∞∑
n=1

[
E
(
(W ∗ + 1)1{W∗+1≥rn}

)]
rn=Zkn

< +∞. (3.14)

Then (3.11) follows.
Step 2. We next prove that ∀ε > 0,

∞∑
n=1

Pkn(|Y n − EξY n| >
ε√
n
) < ∞. (3.15)

Observe that ∀u ∈ Tkn , n ≥ 1,

EknX̄
2
n,u =

∫ ∞

0

2xPkn(|X̄n,u| > x)dx = 2

∫ ∞

0

xPkn(|Xn,u|1{|Xn,u|<Zkn} > x)dx

≤ 2

∫ Zkn

0

xPkn(|Wn−kn(u) + 1| > x)dx = 2

∫ Zkn

0

xP(|Wn−kn + 1| > x)dx

≤ 2

∫ Zkn

0

xP(W ∗ + 1 > x)dx.

Then we have that

∞∑
n=1

Pkn(|Y n − EξY n| >
ε√
n
)

=
∞∑

n=1

EknPξ,kn(|Y n − Eξ,knY n| >
ε√
n
)

≤ ε−2
∞∑

n=1

nEkn

Z−2
kn

∑
u∈Tkn

Eξ,knX
2

n,u

 = ε−2
∞∑

n=1

n

Z−2
kn

∑
u∈Tkn

EknX
2

n,u


≤ ε−2

∞∑
n=1

n

Zkn

∫ Zkn

0

2yP(|W ∗ + 1| > y)dy

9



= ε−2

[
c2 +

∫ ∞

1

( ∞∑
n=1

n

Zkn

1{y<Zkn}

)
· 2yP(|W ∗ + 1| > y)dy

]

≤ ε−2

[
c2 +

∫ ∞

1

(
c3 + c4(ln y)

2/β−1
)
P(|W ∗ + 1| > y)dy

]
≤ ε−2

(
c1 + c4E(W ∗ + 1)(ln(W ∗ + 1))2/β−1

)
≤ ε−2

(
c1 + c4E(W ∗ + 1)(ln(W ∗ + 1))λ

)
< ∞.

Step 3. First we see

Pkn

(
|Eξ,kn Ȳn| >

ε√
n

)

≤
√
n

ε
Ekn |Eξ,kn Ȳn| =

√
n

ε
Ekn

∣∣∣ 1

Zkn

∑
u∈Tkn

Eξ,knX̄n,u

∣∣∣
=

√
n

ε
Ekn

∣∣∣ 1

Zkn

∑
u∈Tkn

(−Eξ,knXn,u1{|Xn,u|≥Zkn})
∣∣∣

≤
√
n

ε

1

Zkn

∑
u∈Tkn

Ekn(Wn−kn(u) + 1)1{Wn−kn (u)+1≥Zkn}

=

√
n

ε

[
E(Wn−kn + 1)1{Wn−kn+1≥rn}

]
rn=Zkn

≤
√
n

ε

[
E(W ∗ + 1)1{W∗+1≥rn}

]
rn=Zkn

.

Then we have

∞∑
n=1

[
E
√
n(W ∗ + 1)1{W∗+1≥rn}

]
rn=Zkn

≤
∞∑

n=1

[
E(W ∗ + 1) ln1/2β(W ∗ + 1)1{W∗+1≥rn}

]
rn=Zkn

= E(W ∗ + 1) ln1/2β(W ∗ + 1)

∞∑
n=1

[
1{W∗+1≥rn}

]
rn=Zkn

≤ c6E(W ∗ + 1) ln3/2β(W ∗ + 1) ≤ c6E(W ∗ + 1) lnλ(W ∗ + 1) < ∞.

Combining step 1-3, we obtain (3.10) and hence the lemma is proved.

Proof of Lemma 3.3 . For ease of notation, set H(t) = (1− t2)ϕ(t).
Observe that

Bn = Bn1 +Bn2 +Bn3 +Bn4, (3.16)

where

Bn1 =
1

Πn

∑
u∈Tkn

Eξ,knWn−kn(u, tn − Su)− Φ

(
tn − Su√
s2n − s2kn

)
−

M
(3)
n −M

(3)
kn

6(s2n − s2kn
)3/2

H

(
tn − Su√
s2n − s2kn

) ;

Bn2 =
1

Πn

∑
u∈Tkn

Φ

(
tn − Su√
s2n − s2kn

)
− Φ(t)

 ;

Bn3 =
M

(3)
n −M

(3)
kn

6(s2n − s2kn
)3/2

1

Πn

∑
u∈Tkn

H

(
tn − Su√
s2n − s2kn

)
−H(t)

 ;

Bn4 =
M

(3)
n −M

(3)
kn

6(s2n − s2kn
)3/2

H(t)Wkn .
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Then the lemma will be proved once we show that

√
nBn1

n→∞−−−−→ 0; (3.17)
√
nBn2

n→∞−−−−→ −(Eσ2
0)

− 1
2ϕ(t)V ; (3.18)

√
nBn3

n→∞−−−−→ 0; (3.19)

√
nBn4

n→∞−−−−→ 1

6
Eα0(Eσ2

0)
− 3

2H(t)W. (3.20)

Next we prove these results subsequently.
First, We go to prove (3.17). Here a key role will be played by the following result on the

asymptotic expansion of the distribution of the sum of independent random variables:

Proposition 3.6. Under the hypothesis of Theorem 2.1, for a.e. ξ,

ϵn = n1/2 sup
x∈R

∣∣∣∣∣Pξ,kn

(∑n−1
k=kn

L̂k√
s2n − s2kn

≤ x

)
− Φ(x)−

M
(3)
n −M

(3)
kn

6(s2n − s2kn
)3/2

H(x)

∣∣∣∣∣ n→∞−−−−→ 0.

Proof. Let Xk = 0 for 0 ≤ k ≤ kn−1 and Xk = L̂k for kn ≤ k ≤ n−1. Then the random variables
{Xk} are independent under Pξ. By virtue of the Markov inequality and Theorem 1 of Bai and
Zhao(1986,[4]), we obtain the following result:

sup
x∈R

∣∣∣∣∣Pξ,kn

( ∑n−1
k=0 L̂k√
s2n − s2kn

≤ x

)
− Φ(x)−

M
(3)
n −M

(3)
kn

6(s2n − s2kn
)3/2

H(x)

∣∣∣∣∣
≤Kξ

(s2n − s2kn
)−2

n−1∑
j=kn

Eξ|Lj |4 + n6

sup
δ>T

1

n

kn +

n−1∑
j=kn

Eξ|vj(t)|

+
1

2n

n .

By our conditions on the environment, we know that

lim
n→∞

n(s2n − s2kn
)−2

n−1∑
j=kn

Eξ|L̂k|4 = E|L̂0|4/Eσ2
0 . (3.21)

lim
n→∞

δn =
11

128

Eσ2
0

Eα0
. (3.22)

Then for n large enough, δn > 1
12

Eσ2
0

Eα0
and hence by use of (2.4),

n6

sup
δ>T

1

n

kn +

n−1∑
j=kn

Eξ|vj(t)|

+
1

2n

n

= o(n− 1
2 ). (3.23)

The proposition comes from (3.21) and (3.23).

From this proposition, it is easy to see that

√
n|Bn1| ≤ Wkn

ϵn
n→∞−−−−→ 0.

Hence (3.17) is proved.
The next thing is to prove (3.18).
Observe that

|
√
nBn2 + (Eσ2

0)
− 1

2ϕ(t)V | ≤ Bn21 +Bn22 +Bn23 +Bn24,

with Bn21 =
1

Πkn

∑
u∈Tkn

∣∣∣∣∣∣√n

Φ( tn − Su√
s2n − s2kn

)
− Φ(t)

+ (Eσ2
0)

− 1
2ϕ(t)Su

∣∣∣∣∣∣1{|Su|≤kn},
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Bn22 =

√
n

Πkn

∑
u∈Tkn

∣∣∣∣∣∣Φ
(

tn − Su√
s2n − s2kn

)
− Φ(t)

∣∣∣∣∣∣1{|Su|>kn},

Bn23 = (Eσ2
0)

− 1
2ϕ(t)|Vkn − V |,

Bn24 = (Eσ2
0)

− 1
2ϕ(t)

1

Πkn

∑
u∈Tkn

|Su|1{|Su|>kn}.

By the choice of β < 1/2 and the conditions on the environment, we have that

ϵ̃n = sup
|y|≤kn

∣∣∣√n
[
Φ
(
(s2n−1 − s2kn

)−
1
2 (tn − y)

)
− Φ(t)

]
+ (Eσ2

0)
− 1

2ϕ(t)y
∣∣∣ n→∞−−−−→ 0. (3.24)

Hence
Bn21 ≤ Vkn ϵ̃n

n→∞−−−−→ 0. (3.25)

Next we go to prove that

Bn23
n→∞−−−−→ 0; Bn24

n→∞−−−−→ 0. (3.26)

This will follow from the facts:

1

Πkn

∑
u∈Tkn

|Su|1{|Su|>kn}
n→∞−−−−→ 0 a.s.;

√
n

1

Πkn

∑
u∈Tkn

1{Su|>kn}
n→∞−−−−→ 0 a.s. (3.27)

In order to prove (3.27), we firstly observe that

E

 ∞∑
n=1

1

Πkn

∑
u∈Tkn

|Su|1{|Su|>kn}


=

∞∑
n=1

E|Ŝkn |1{|Ŝkn |>kn} ≤
∞∑

n=1

k1−η
n E|Ŝkn |η ≤

∞∑
n=1

k
− η

2
n

kn−1∑
j=0

E|L̂j |η =
∞∑

n=1

k
1− η

2
n E|L̂0|η,

E

 ∞∑
n=1

√
n

1

Πkn

∑
u∈Tkn

1{|Su|>kn}


=

∞∑
n=1

√
nE1{|Ŝkn |>kn} ≤

∞∑
n=1

√
nk−η

n E|Ŝkn |η ≤
∞∑

n=1

√
nk

− η
2−1

n

kn−1∑
j=0

E|L̂j |η =
∞∑

n=1

n
1
2 k

− η
2

n E|L̂0|η.

The assumptions on β, kn and η ensure that the series in the right hand side of the above two
expressions are convergent. Then

∞∑
n=1

1

Πkn

∑
u∈Tkn

|Su|1{|Su|>kn} < ∞,

∞∑
n=1

√
n

1

Πkn

∑
u∈Tkn

1{|Su|>kn} < ∞ a.s.,

which deduce (3.27), and consequently, (3.26) is proved.
Due to Lemma 3.1, it is immediate that

Bn24
n→∞−−−−→ 0 a.s. (3.28)

From (3.25) (3.26) and (3.28), we derive (3.18).
Now we turn to the proof of (3.19).
According to the hypothesis of Theorem 2.1, it follows from the Birkoff ergodic theorem that

lim
n→∞

√
n

M
(3)
n −M

(3)
kn

6(s2n − s2kn
)3/2

=
1

6
(Eσ2

0)
−3/2Eα0. (3.29)

12



Notice that ∣∣∣∣∣∣ 1

Πn

∑
u∈Tkn

H

(
tn − Su√
s2n − s2kn

)
−H(t)

∣∣∣∣∣∣
≤ 2

Πn

∑
u∈Tkn

1{|Su|>kn} +
1

Πn

∑
u∈Tkn

∣∣∣∣∣∣H
(

tn − Su√
s2n − s2kn

)
−H(t)

∣∣∣∣∣∣1{|Su|≤kn}.

The first term in the last expression above tends to 0 a.s. by (3.27), and the second one tends to
0 a.s. because

sup
|y|≤kn

∣∣∣∣∣∣H
(

tn − y√
s2n − s2kn

)
−H(t)

∣∣∣∣∣∣ n→∞−−−−→ 0.

Then combining the above facts, (3.19) is proved.
It remains to prove (3.20), which is an immediate consequence of (2.3) and (3.29).
Therefore, the proof of Lemma 3.3 is completed.

Proof of Lemma 3.4. This lemma follows from the Borel-Cantelli Lemma and the following result
given by [15].

Proposition 3.7. Assume the condition (2.1). Then

W −Wn = o(n−λ) a.s.

Now the main theorem follows from the decomposition (3.2) and Lemmas 3.2∼ 3.4.
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