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Abstract

Conditional independence assumption is popular in many fields as long as it makes sense intuitive-
ly. However, there are few methods available for testing its validity in the statistical literature,
especially when the underlying variables are continuous. In this paper we propose a supremum-
type statistic for testing the conditional independence assumption, based on partial sums of the
product of respective residuals. The proposed test is doubly robust in the sense that it produces
valid result if either one of the conditional mean models is correctly specified. To implement our
test, we present a resampling procedure for calculating the p-values. Simulation studies suggest
that the new method is very competitive in terms of controlling Type I error rate and power. An
AIDS data set is used for illustration.
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1. Introduction

We are considering the problem of testing the conditional independence between two variables Y1
and Y2 given a p-vector of covariates X = (X1, . . . , Xp) based on an independent and identically
sample {(Y1i, Y2i, Xi) : i = 1, . . . , n} from the population of (Y1, Y2, X); that is, the null hypothesis
we are interested in is

Y1 ⊥ Y2 | X, (1)

where Y1 ⊥ Y2 | X indicates that Y1 and Y2 are conditionally independent given X (Dawid, 1979).
Assumption (1) is widely used in many fields; see for example Dawid (1979), Rubin and Rosenbaum
(1983), Rosenbaum (1984), Prentice (1989).

When X is a categorical variable, Korn (1984) and Taylor (1987) developed a weighted sum
of Kendall’s tau over the categorical variable X. When X is a continuous variable, Goodman
(1959) and Quade (1974) considered a partial version of Kendall’s tau by using the number of local
concordant and disconcordant pairs of observations. In other words, they compared values of Y1
and Y2 only for observations where X values are close. Unfortunately, it would be difficult to find
two observations which are close to each other for continuous random variables. A partial rank
correlation coefficient based on comparing pairs for which the values of the conditioning variable
follow each other in a numerical ordering was studied by Gripenberg (1992). However, what exactly
his statistic estimates is not clear. For continuous variables, there are also several nonparametric
tests for conditional independence in the literature; see Su and White (2014) and references therein.
However, kernel methods have to be used, which may not be practically convenient.



The conditional independence assumption is different from the familiar unconditional indepen-
dence assumption Y1 ⊥ Y2. For the latter, there are many statistics available for testing its validity.
Popular examples include Pearson’s correlation, Spearman’s rho and Kendall’s tau. However, for
testing conditional independence, the commonly used method appears to be the test based on
Pearson’s partial correlation, whose population version is

r12|X =
r12 − r⊤1XR

−1
X r2X

(1− r⊤1XR
−1
X r1X)1/2(1− r⊤2XR

−1
X r2X)1/2

,

where r12 is the usual correlation between Y1 and Y2, r1X is a column vector of length p with
the j’th entry being Pearson’ correlation between Y1 and Xj (j = 1, . . . , p), r2X is defined in a
similar fashion, and RX denotes the correlation matrix of X. In fact, r12|X equals the correlation

between errors in the linear regressions y1 = β⊤x+ ϵ1 and y2 = γ⊤x+ ϵ2. Kendall’s partial tau and
Spearman’s partial rho can be defined analogously. It is well known that, the partial-type measures
are not necessarily zero even (1) holds (Korn 1984). As a result, they are not valid for measuring
conditional independence without further restrictive distributional assumptions. Moreover those
tests may produce inflated Type I errors.

In this paper, we propose a new index for measuring the conditional association between Y1 and
Y2 given X. Our index requires a model assumption of the underlying variables, but only through
the respective marginal regression functions E(Y1|X) and E(Y2|X). Further, when (1) is true, the
new index is exactly zero if either one of the two conditional mean models is correctly specified.
This provides a double protection for the use of our method. A supremum-type test is constructed
for testing the validity of the conditional independence assumption, based on a sample version of
the proposed population index. The test statistic equals the supremum of a partial sum process
defined by the product of the respective residuals. To implement our test, we present a resampling
procedure for calculating the p-values. Numerical results indicate that the new test is well behaved
for finite samples. An AIDS data set is used to illustrate our method.

2. Methodology

2.1 A double robust index

We first introduce a new index for measuring the conditional association between Y1 and Y2
given X. A test statistic based on this index is straightforward. Let m1(x) and m2(x) be two
functions of x such that both E{m2

1(X)} and E{m2
2(X)} are finite. Define

G = sup
x∈Rp

|E[{Y1 −m1(X)}{Y2 −m2(X)}I(X ≤ x)]| . (2)

where I(·) is the indicator function, and the event {X ≤ x} indicates that all the components of X
are less than or equal to those of x. The following proposition indicates that G is a doubly robust
index for measuring the conditional association between Y1 and Y2 given X.

Proposition 1 Assume that either m1(x) = E(Y1|x) or m2(x) = E(Y2|x) holds. Then G = 0
if and only if the conditional correlation between Y1 and Y2 given X is zero almost surely with
respect to the distribution of X.
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2.2 Test statistic

To test the conditional independence assumption, we propose to use a sample version of the index
G defined above. For this purpose, we need two working models for both E(Y1|x) and E(Y2|x). We
assume that the conditional mean of Y1 and Y2 depends on X respectively by

E(Y1|x) = µ1(z
⊤
1 β), (3)

E(Y2|x) = µ2(z
⊤
2 γ), (4)

where µ1 and µ2 are known functions, z1 = z1(x) and z2 = z2(x) are fixed vector-valued trans-
formations of x, β and γ are vectors of unknown regression parameters with respective dimension
q1 and q2. Our formulation of the conditional mean model is very general and includes general-
ized linear model and polynomial regression as its special cases. For example, it accommodates
the case that z1 = (1, x)⊤ and z2 = (1, x, x2)⊤ for a scalar covariate x. We further assume that
var(Y1|x) = ξ1(µ1) and var(Y2|x) = ξ2(µ2), where ξ1 and ξ2 are known functions.

Let β̂ be the quasilikelihood estimator of β (Wedderburn, 1974), which is a solution to the
estimating equation

∑n
i=1 U1i(β) =

∑n
i=1 µ̇1(Z

⊤
1iβ)ξ

−1
1i (β)Z1i{Y1i − µ1(Z

⊤
1iβ)} = 0, where U1i(β) =

µ̇1(Z
⊤
1iβ)ξ

−1
1i (β)Z1i{Y1i − µ1(Z

⊤
1iβ)} and ξ1i(β) = ξ1{µ1(Z

⊤
1iβ)}. Correspondingly, γ̂ is a solution

to
∑n

i=1 U2i(γ) =
∑n

i=1 µ̇2(Z
⊤
2iγ)ξ

−1
2i (γ)Z2i{Y2i − µ2(Z

⊤
2iγ)} = 0, with a similar definition of U2i(γ)

and ξ2i(γ). Here and throughout, ȧ(t) denotes the first order derivative for a real-valued function
a(t). Let β∗ and γ∗ be the respective probability limits of β̂ and γ̂. Under some mild regularity
conditions (see for example page of Tsiatis, 2006), n1/2(β̂ − β∗) is asymptotically equivalent to
A−1

1 (β∗)S1n(β
∗) and n1/2(γ̂ − γ∗) is asymptotically equivalent to A−1

2 (γ∗)S2n(γ
∗), where A1 =

− limn→∞ n−1
∑n

i=1 U̇1i(β), A2 = − limn→∞ n−1
∑n

i=1 U̇2i(γ), S1n(β
∗) = n−1/2

∑n
i=1 U1i(β

∗) and
S2n(γ

∗) = n−1/2
∑n

i=1 U2i(γ
∗).

Consider the following statistic,

Wn(t) =
1√
n

n∑
i=1

{Y1i − µ1(Z
⊤
1iβ̂)}{Y2i − µ2(Z

⊤
2iγ̂)}I(Xi ≤ t),

where t = (t1, · · · , tp)⊤ ∈ Rp, I(·) is the indicator function, and the event {x ≤ t} indicates that all
the components of x are less than or equal to those of t. Consequently, Wn(t) is a multiparameter
stochastic process. The proposed test statistic is

Gn = sup
t∈Rp

|Wn(t)| . (5)

By a similar argument to Su and Wei (1991), we can show that Gn converges to G in probability
as n goes to infinity.

To approximate the large sample null distribution of Gn, we will adopt a resampling tech-
nique similar to Su and Wei (1991) and Lin, Wei and Ying (2002). To this end, we need to
find an asymptotically equivalent representation of Wn(t) for each fixed t. Under some mild
regularity conditions (see, for example, van der vaart 2000, chapter 5), Wn(t) is asymptotical-
ly equivalent to W0n(t) + W1n(t) + W2n(t), where W0n(t) = n−1/2

∑n
i=1 e1i(β

∗)e2i(γ
∗)I(Xi ≤ t),
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W1n(t) = η1n(t;β
∗, γ∗)A−1

2 (γ∗)S2n(γ
∗) and W2n(t) = η2n(t;β

∗, γ∗)A−1
1 (β∗)S1n(β

∗), with

η1n(t;β
∗, γ∗) = − 1

n

n∑
i=1

e1i(β
∗)µ̇2(Z

⊤
2iγ

∗)Z⊤
2iI(Xi ≤ t),

η2n(t;β
∗, γ∗) = − 1

n

n∑
i=1

e2i(γ
∗)µ̇1(Z

⊤
1iβ

∗)Z⊤
1iI(Xi ≤ t),

and e1i(β
∗) = Y1i − µ1(Z

⊤
1iβ

∗) and e2i(γ
∗) = Y2i − µ2(Z

⊤
2iγ

∗) for i = 1, · · · , n. Following Su
and Wei (1991) and Lin, Wei and Ying (2002), the asymptotic null distribution of Wn(t) can be

approximated by that of Ŵn(t) = Ŵ0n(t) + Ŵ1n(t) + Ŵ2n(t). Here,

Ŵ0n(t) = n−1/2
n∑

i=1

Vi e1i(β̂)e2i(γ̂)I(Xi ≤ t),

Ŵ1n(t) = η1n(t; β̂, γ̂)A
−1
2n (γ̂)Ŝ2n(γ̂) = − 1

n

n∑
i=1

e1i(β̂)µ̇2(Z
⊤
2iγ̂){Z⊤

2iA
−1
2n (γ̂)Ŝ2n(γ̂)}I(Xi ≤ t),

Ŵ2n(t) = η2n(t; β̂, γ̂)A
−1
1n (β̂)Ŝ1n(β̂) = − 1

n

n∑
i=1

e2i(γ̂)µ̇1(Z
⊤
1iβ̂){Z⊤

1iA
−1
1n (β̂)Ŝ1n(β̂)}I(Xi ≤ t),

where A1n(β̂) = −n−1
∑n

i=1 U̇1i(β̂), A2n(γ̂) = −n−1
∑n

i=1 U̇2i(γ̂), Ŝ1n(β̂) = n−1/2
∑n

i=1 ViU1i(β̂),

Ŝ2n(γ̂) = n−1/2
∑n

i=1 ViU2i(γ̂); and {V1, · · · , Vn} are random sample from standard normal distri-

bution and are independent of {(Y11, Y21, X1), · · · , (Y1n, Y2n, Xn)}. It is worth noting that Ŵ1n(t)

and Ŵ2n(t) depend on the resampling through Ŝ1n(β̂) and Ŝ2n(γ̂). Further, the above formulation
facilitates numerical computation. Suppose that gn is the observed value of Gn. We can compute
the p-value of the test statistic by repeatedly generating random samples from N(0, 1).

3. Simulation studies

In this section, we carried out simulations to investigate the finite sample performance of new
test statistic and to compare it, in terms of Type I error rate and power, with Pearson’s partial
correlation, Kendall’s partial tau and Spearman’s partial rho, as described in the introductory
section. All the simulations are conducted using the R language (R Core Team 2013).

We considered two model setups. For all our simulations, we used 5000 replications to generate
the desired results. In each replication, we computed the p-values using the resampling method
described in the last section, with resampling size equal to 1000. For the partial procedures, the
p-values were computed using R’s package ppcor (Kim 2012).

For the first model, the true data generating process is as follows. We first generated a scalar
X from U(−1, 1); given X = x, Y1 and Y2 were generated respectively through Y1 = β0 + β1x +
β2x

2 + σ1|x|λ/2ϵ1 + ηe and Y2 = γ0 + γ1x + γ2x
2 + σ2|x|λ/2ϵ2 + ηe. Here, β0 = β1 = β2 = 1

and γ0 = γ1 = γ2 = 1 are true values of the regression parameters, (σ1, σ2, η) is a vector of

scale parameters, (ϵ1, ϵ2, e)
iid∼N(0, 1), and λ is a type of tuning parameter which controls the
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heteroscedasticity of the respective models. For this model, the conditional correlation between
Y1 and Y2 given X = x is η2{(σ2

1|x|λ + η2)(σ2
2|x|λ + η2)}−1/2. We considered four parameter

combinations of (λ, σ1, σ2), which are (0, 1, 1), (0, 0.5, 1), (2, 1, 1) and (2, 0.5, 1) respectively.

To implement our test procedure, it is required to assume a model for both E(Y1|x) and E(Y2|x).
We consider two types of working model specification. The proposed test statistics associated are
denoted as G1

n and G2
n respectively. For the first specification, the assumed model for E(Y1|x) is

β0 + β1x + β2x
2 and so is correctly specified; but the assumed model for E(Y2|x) is incorrectly

specified as γ0 + γ1x. For the second specification, both mean models are correctly specified. For
both specifications, the conditional variances are assumed to be constant. As a result, the variance
functions are correctly specified when λ = 0 but incorrectly specified when λ ̸= 0 in the true data
generating process.

Table 1 summarizes the empirical sizes for the different procedures we investigated. In the table,
the column labeled G1

n corresponds to results of proposed test statistic with the first type model
specification, that is, with correct model for E(Y1|x) but incorrect model for E(Y2|x); the column
labeled G2

n corresponds to results with the second type of model specification, that is, correct
models for both E(Y1|x) and E(Y2|x). The last three columns of the table are results of the three
partial test statistics.

Columns G1
n and G2

n of table 1 suggest that the empirical size of the proposed procedure is
quite close to its nominal counterparts as long as one of the working models for the conditional
mean E(Y1|x) and E(Y2|x) is correctly specified. This is true even when we incorrectly model
the conditional variance functions for both var(Y1|x) and var(Y2|x), although the proposed test
performs a little bit worse for this situation than it were when λ = 0. For example, the first two
blocks of table 1 corresponding to λ = 0, seems better than the last two blocks which correspond to
results when we use constant variance function for estimating β and γ while actually they are linear
functions of |x|. On the contrary, it is seen from the last three columns of table 1 that Pearson’s
partial correlation, Kendall’s partial tau and Spearman’s partial rho all produce inflated Type I
errors. The discrepancy between the true and stated significance levels is particularly serious either
when the constant error variance in the true data generating process turns small with λ = 0 but
σ1 reducing from 1 to 0.5, or the true conditional variance of Y1 and Y2 depends on the conditional
variable x, corresponding to λ = 2. For example, at the commonly referred stated significance level
0.05, the false positive rate of the test based on Pearson’s partial correlation is bigger than 0.54
when λ = 2. In other words, it nearly falsely rejects half the null when actually it is true.

To reinforce previous findings, we display in Figure 1 the histograms of the empirical p values for
the different procedures. It is seen that the empirical distribution of the p values associated with
the proposed test is quite close to distribution of a U(0, 1) variable under all four parameter combi-
nations we examined, while those for partial tests are seriously right skewed. To be more intuitive,
we also display in table 2 the basic mean and standard error summaries of the empirical p-values of
the different procedures when the null hypothesis is true. The empirical numerical characteristics
of the proposed test are consistent with the population mean and standard deviation of a U(0, 1)
variable, although the consistency is less satisfactory when the true model is heteroscedastic.

Due to the substantial difference of the actual Type I errors, it is less appropriate to compare the
power directly of the different procedures. Instead, we compare them in terms of the adjusted power,
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which is computed as follows. For a specified procedure with test statistic T say, we first generated
5000 samples independently under the null hypothesis. Based on the ith sample, we computed

the test statistic T
(0)
i . We worked out the (1− α)’th quantile of the sample {T (0)

1 , · · · , T (0)
5000}, and

denoted as Ĉα. We then generated another 5000 independent samples under a specified alternative,

and computed the associated test statistic T
(1)
i for i = 1, · · · , 5000. The resulting adjusted power

is 1
5000

∑5000
i=1 I(T

(1)
i ≥ Ĉα), where I(A) is an indicator function taking value 1 if A is true and

0 otherwise. The adjusted power curves of the different procedures are shown in figure 2. It
appears that the proposed test is very competitive compared with the partial based tests, as long
as one conditional mean models is correctly specified. Also, it seems that the gain from additionally
assuming a correct conditional mean model is very limited for the specific true model we considered.

Our second model setup is a partial repetition of a model considered in Korn (1984). Specifically,
we first generated a scalar covariate X from U(0, 1); given X = x, Y1 and Y2 were generated
through the same way as our first model setup except changing the conditional mean structure as
2 − 2I(x < 1/2) − 2x + 4xI(x < 1/2). In particular, the current model with λ = 0 and η = 0
reduces to the model considered by Korn (1984), who has designed the original model to examine
the possible ranges of the limiting values of the three partial association indices under conditional
independence assumption. The corresponding results for this model are displayed in table 3, 4 and
figure 4 and 3; they are quite consistent with results from the first model, and so summary of them
is omitted here.

4. Application to an AIDS data

We now apply the proposed method to data from the AIDS Clinical Trials Group protocol 175
(ACTG175). ACTG175 was a randomized clinical trial to compare monotherapy with zidovudine
or didanosine with combined therapy with zidovudine and didanosine or zidovudine and zalcitabine
in adults infected with the human immunodeficiency virus type I whose CD4 T cell counts were
between 200 and 500 per cubic millimeter; see Hammer et al. (1996) for details.

It is of interest here to test whether Y1, the CD4 count at 96±5 weeks, is independent of Y2,
the CD4 count at 20±5 weeks, given X1, the baseline CD4 count, for the different subpopulation
defined by gender of patients and arms of treatment a patient belonging to. In other words we are
interested in testing how does a patient’ conditions of the baseline CD4s determine his/her future
response. Totally, there are 1336 subjects with complete observations on (Y1, Y2, X1).

We applied the proposed method to each of the eight samples defined by gender and arms of
treatment. All the regression models involved were assumed to be linear in X1, and the regression
parameters were estimated by the least square methods. We computed the p-values of the proposed
test by the resampling method introduced in section 2. The resampling size was 1000.

Table 5 summarizes the results. The p-values of the table indicate that, there is a strong evidence
for the existence of association between CD4 count at 96±5 weeks and CD4 count at 20±5 weeks
conditional on the CD4 count at baseline, whatever the gender of a patient and whatever treatment
group a patient belongs to. Although it is relatively less stronger for female patients than for male
patients, this is very likely due to the lower sample size of the different female subgroups. In fact,
if we combined the different treatment groups of female patients with a total sample size 218, the
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resulting p-value is less than 10−4, implying an association between Y1 and Y2 given X1 for female
patients.

5. Concluding remarks

We have proposed a double robust procedure for testing the conditional independence assump-
tion. Simulation studies suggest that the new test performs well for finite samples with a va-
riety of data generating processes. Although we formulate the problem with a scalar Y1 and
Y2, the proposed method is clearly applicable when Y1 and Y2 are both random vectors with
fixed dimension q1 and q2, respectively. Under these circumstances, the proposed test statistic is
G0

n = max{k=1,··· ,q1,l=1,··· ,q2}Gn,kl, where

Gn,kl = sup
x∈Rp

∣∣∣∣∣ 1√
n

n∑
i=1

{Y1i − µ1(Z
⊤
1iβ̂)}(k){Y2i − µ2(Z

⊤
2iγ̂)}(l)I(Xi ≤ t)

∣∣∣∣∣ ,
where β̂ and γ̂ are GEE estimators of the β and γ, and a(k) denotes the kth component of a vector
a.

One potential issue about the proposed test is that it possibly converges to zero even when the
null hypothesis is not true; for example, when Y1 and Y2 given X is not conditionally independent
but conditionally uncorrelated everywhere. In other words, the proposed test lose power under this
circumstance. A possible solution is to improve the index G in (2) to be G0 = supy1,y2 G(y1, y2),
where

G(y1, y2) = sup
x

|E[{I(Y1 ≤ y1)−m1y1(X)}{I(Y2 ≤ y2)−m2y2(X)}I(X ≤ x)]| .

Then it can be shown that G0 = 0 is equivalent to the Y1 ⊥ Y2 | X, as long as one of m1y1(x) =
F1(y1|x) or m2y2(x) = F2(y1|x) is correctly specified. Then one can test assumption (1) based on
a sample version of G0.

Anothe issue is that the proposed test becomes computationally infeasible when the dimension of
X is relatively high, since the number of function evaluations for computing Gn is an exponential
function of p. This is a common problem for high dimensional data analysis. To relieve this
disaster, a possible solution is to improve our test statistic Gn based on the technique of principle
component analysis. In particular, let Σn be the sample variance-covariance matrix of X1, . . . , Xn,
and let ν1, . . . , νp be the eigenvectors of Σn with corresponding eigenvalues τ1, . . . , τp. For this
situation, we test (1) based on the following test statistic

G∗
n = sup

t∈Rp

∣∣∣∣∣ 1√
n

n∑
i=1

{Y1i − µ1(Z
⊤
1iβ̂)}{Y2i − µ2(Z

⊤
2iγ̂)}I(X∗

i ≤ t)

∣∣∣∣∣ ,
where X∗

i = (X∗
1i, . . . , X

∗
qi)

⊤ is the first q principle components of Xi with X∗
ji = ν⊤j Xi for j =

1, . . . , q; q is usually small compared to p. However, G∗
n may be powerful only in limited cases. It

is very interesting in future work to develop a powerful test procedure for testing assumption (1)
without too much dependence on the underlying variable dimension.
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Table 1: Empirical sizes of different procedures for testing conditional independence based on data generated
from model 1. The sample size is n = 100; the replication times is 5000; the resampling size is 1000.

Nominal level G1
n G2

n Pearson Kendall Spearman
λ = 0, (σ1, σ2) = (1, 1)

0.01 0.0084 0.0084 0.0408 0.0356 0.0896
0.05 0.0508 0.0514 0.1242 0.1190 0.2508
0.10 0.1098 0.1086 0.2068 0.1902 0.3780

λ = 0, (σ1, σ2) = (0.5, 1)
0.01 0.0116 0.0116 0.1448 0.0892 0.2422
0.05 0.0504 0.0506 0.3186 0.2264 0.5000
0.10 0.1048 0.1034 0.4254 0.3272 0.6400

λ = 2, (σ1, σ2) = (1, 1)
0.01 0.0086 0.0072 0.3826 0.3496 0.5332
0.05 0.0554 0.0564 0.5682 0.5422 0.7446
0.10 0.1158 0.1156 0.6614 0.6426 0.8378

λ = 2, (σ1, σ2) = (0.5, 1)
0.01 0.0074 0.0062 0.7650 0.6078 0.7876
0.05 0.0474 0.0496 0.8824 0.7664 0.9272
0.10 0.1130 0.1128 0.9256 0.8368 0.9624
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Figure 1: Histograms of the empirical p values for the different testing procedures when data are generated
through model 1. The rows correspond in turn to values of the parameter combination (λ, σ1, σ2): (0, 1, 1),
(0, 0.5, 1), (2, 1, 1), (2, 0.5, 1); the columns correspond in turn to testing procedures: proposed test with
correct µ1 but incorrect µ2, proposed test with both correct µ1 and µ2, Pearson’ partial correlation, Kendall’s
partial tau, Spearman’s partial rho.
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Figure 2: Adjusted powers of the different testing procedures for model 1: red solid line for G1
n, black

solid thick line for G2
n, dashed line for Pearson, dotted line for Kendall, dotdash line for Spearman; (a)

λ = 0, σ1 = 1, σ2 = 1, (b) λ = 0, σ1 = 0.5, σ2 = 1, (c) λ = 2, σ1 = 1, σ2 = 1, (d) λ = 2, σ1 = 0.5, σ2 = 1.
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Figure 3: Histograms of the empirical p values for the different testing procedures when data are generated
through model 2. The rows correspond in turn to values of the parameter combination (λ, σ1, σ2): (0, 1, 1),
(0, 0.5, 1), (2, 1, 1), (2, 0.5, 1); the columns correspond in turn to testing procedures: proposed test with
correct µ1 but incorrect µ2, proposed test with both correct µ1 and µ2, Pearson’ partial correlation, Kendall’s
partial tau, Spearman’s partial rho.
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Figure 4: Adjusted powers of the different testing procedures for model 2: red solid line for G1
n, black

solid thick line for G2
n, dashed line for Pearson, dotted line for Kendall, dotdash line for Spearman; (a)

λ = 0, σ1 = 1, σ2 = 1, (b) λ = 0, σ1 = 0.5, σ2 = 1, (c) λ = 2, σ1 = 1, σ2 = 1, (d) λ = 2, σ1 = 0.5, σ2 = 1.
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Table 2: Mean and standard errors of the empirical p values based on data generated from model 1; corre-
sponding values of U(0, 1) are 0.5 and 0.2887, respectively. The sample size is n = 100; the replication times
is 5000; the resampling size is 1000.

G1
n G2

n Pearson Kendall Spearman
λ = 0, (σ1, σ2) = (1, 1)

mean 0.4644 0.4635 0.4084 0.4254 0.2801
se 0.2732 0.2740 0.3007 0.3031 0.2791

λ = 0, (σ1, σ2) = (0.5, 1)
mean 0.4635 0.4635 0.2516 0.3272 0.1332
se 0.2709 0.2712 0.2729 0.2982 0.1923

λ = 2, (σ1, σ2) = (1, 1)
mean 0.4404 0.4412 0.1512 0.1590 0.0606
se 0.2636 0.2635 0.2397 0.2408 0.1314

λ = 2, (σ1, σ2) = (0.5, 1)
mean 0.4368 0.4387 0.0302 0.0666 0.0153
se 0.2619 0.2624 0.1022 0.1579 0.0505

Table 3: Empirical sizes of different procedures for testing conditional independence based on data generated
from model 2. The sample size is n = 100; the replication times is 5000; the resampling size is 1000.

Nominal level G1
n G2

n Pearson Kendall Spearman
λ = 0, (σ1, σ2) = (1, 1)

0.01 0.0096 0.0102 0.0396 0.0362 0.0306
0.05 0.0506 0.0548 0.1254 0.1176 0.1096
0.10 0.1132 0.1106 0.1988 0.1884 0.1828

λ = 0, (σ1, σ2) = (0.5, 1)
0.01 0.0106 0.0118 0.1150 0.1164 0.1008
0.05 0.0568 0.0588 0.2848 0.2762 0.2610
0.10 0.1156 0.1156 0.4034 0.3904 0.3800

λ = 2, (σ1, σ2) = (1, 1)
0.01 0.0076 0.0086 0.3420 0.5332 0.5764
0.05 0.0526 0.0498 0.5394 0.7498 0.7820
0.10 0.1118 0.1112 0.6398 0.8306 0.8580

λ = 2, (σ1, σ2) = (0.5, 1)
0.01 0.0060 0.0062 0.7352 0.8982 0.9118
0.05 0.0454 0.0476 0.8718 0.9660 0.9712
0.10 0.1080 0.1080 0.9222 0.9830 0.9860
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Table 4: Mean and standard errors of the empirical p values based on data generated from model 2; corre-
sponding values of U(0, 1) are 0.5 and 0.2887, respectively. The sample size is n = 100; the replication times
is 5000; the resampling size is 1000.

G1
n G2

n Pearson Kendall Spearman
λ = 0, (σ1, σ2) = (1, 1)

mean 0.4566 0.4538 0.4140 0.4216 0.4247
se 0.2734 0.2722 0.3008 0.2997 0.2989

λ = 0, (σ1, σ2) = (0.5, 1)
mean 0.4601 0.4592 0.2787 0.2908 0.2923
se 0.2743 0.2737 0.2871 0.2940 0.2917

λ = 2, (σ1, σ2) = (1, 1)
mean 0.4449 0.4454 0.1557 0.0651 0.0558
se 0.2674 0.2665 0.2337 0.1456 0.1343

λ = 2, (σ1, σ2) = (0.5, 1)
mean 0.4480 0.4472 0.0312 0.0072 0.0061
se 0.2651 0.2656 0.0987 0.0362 0.0324

Table 5: The p-values of the proposed test when applied to different samples defined by gender and arms of
treatment of patients. For treatment arms, 0=zidovudine, 1=zidovudine and didanosine, 2=zidovudine and
zalcitabine, 3=didanosine.

gender arms number of patients p-values
m 0 263 <0.000
m 1 276 <0.000
m 2 285 <0.000
m 3 300 <0.000
f 0 58 0.005
f 1 57 0.002
f 2 52 0.004
f 3 51 0.009
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