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Abstract

Let 0 ≤ V ∈ L1
Loc(Rn) and H = (−∆)m + V (m ∈ N) be the generalized Schrödinger

type operator. Then there are two a-priori natural nonnegative closed forms associated to the

self-adjoint extension of H: the maximal closed form Qmax defined by the sum

Qmax(f, f) = Q0(f, f) +
〈
V 1/2f, V 1/2f

〉
.

for any f ∈ Wm,2(Rn) with V 1/2f ∈ L2(Rn) and the minimal closed form Qmin defined by the

form closure of Qmax restricted to C∞c (Rn). If m = 1, then it was shown by T. Kato that the

maximal and minimal forms are identical, based on his famous positivity inequality. However,

for m ≥ 2, the problem of the consistency seems to have no complete answer in the case of the

most general locally integrable potential.

In this paper, the authors prove that C∞c (Rn) is the form core of the domain D(Qmax) for

any 0 ≤ V ∈ LpLoc((R
n)) with some p depending on n,m which greatly improves a form core

result of E. B. Davies [5] concerning all smooth non-negative potentials. In particular, we can

choose V ∈ L1
Loc((Rn)) ( the most general locally integrable potential class ) if 2m > n. Finally,

the form core result can be applied to establish the sharp bound of the kernel of the semigroup

e−tH for 2m > n.
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1 Introduction

Let m ≥ 1, n ≥ 1 be any two positive integers. It is well-known that the poly-harmonic

operator H0 := (−∆)m is a nonnegative self-adjoint operator on the Sobolev space W 2m,2(Rn)

and associated to a symmetric nonnegative closed form Q0(f, g) on the form domain D(Q0) =

Wm,2(Rn):

Q0(f, g) = 〈H1/2
0 f,H

1/2
0 g〉 =

∫
Rn
|ξ|2mf̂(ξ)ĝ(ξ)dξ,(1.1)

where f̂ denotes Fourier transform of f and H
1/2
0 = (−∆)m/2 is the square root of H0( e.g. see

Kato [12, p.281]), which can be expressed by the Fourier multiplier:

(H
1/2
0 f)∧(ξ) = |ξ|mf̂(ξ), f ∈Wm,2(Rn).(1.2)

Let V ∈ L1
loc(Rn) and V ≥ 0. Then there are two a-priori natural nonnegative closed forms

associated to the self-adjoint extension of sum H0 + V . Firstly, let

D(Qmax) =
{
f ∈Wm,2(Rn); V 1/2f ∈ L2(Rn)

}
(1.3)

and define the maximal closed form Qmax on D(Qmax) by the sum

Qmax(f, g) = Q0(f, g) +
〈
V 1/2f, V 1/2g

〉
.(1.4)

Secondly, note that C∞c (Rn) ⊂ D(Qmax), then we also can obtain a minimal closed form Qmin

by the form closure of Qmax restricted to C∞c (Rn) × C∞c (Rn). Thus a natural question is

that whether the equality Qmax = Qmin holds. Equivalently, we can ask what are the general

conditions on V such that the space C∞c (Rn) is the form core of Qmax with the domain D(Qmax)?

When m = 1 ( correspondingly, −∆+V is the classical Schrödinger operator ), the question

was proposed and answered by T. Kato [11] under the most general condition that 0 ≤ V ∈
L1

loc(Rn) based on semigroup tools, also see B. Simon [19]. Both authors of [11] and[19] studied

the more complex cases with singular magnetic vector potentials. In fact, there was a related

and extensively studied question of whether −∆ + V is essentially self-adjoint on C∞c (Rn) for

any 0 ≤ V ∈ L2
loc(Rn). This question on essential self-adjointness was first conjectured by B.

Simon [17], and proved by T. Kato [10] based on his famous distributional inequality:

∆|ϕ| ≥ <((sgn ϕ) ∆ϕ),(1.5)

for any ϕ ∈ L1
loc(Rn) with ∆ϕ ∈ L1

loc(Rn) where sgn ϕ = limε↓0 ϕ/(|ϕ|2 + ε2)1/2. Since then,

many studies and methods on the form core problem and essential self-adjointness have been

developed ( See Simon [22] for more detail reviews and therein references ). In particular,

Simon [18] found that Kato’s inequality (1.5) is actually equivalent to the positivity preserving

of semigroup et∆ ( i.e. et∆ϕ ≥ 0 for any L2 3 ϕ ≥ 0 ) or the domination of semigroup ( i.e.

|et∆ϕ| ≤ et∆|ϕ| for any ϕ ∈ L2 ), and developed an kind of abstract Kato’s inequality version

(also see [9], [20] ).
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However, for m ≥ 2, since the higher order heat semigroups e−t(−∆)m are not positivity-

reserving ( see Reed and Simon [14], Davies [6] ), so one can’t establish the similar Kato inequality

as (1.5) (see [18]) or the higher order semigroup domination:

|e−tHϕ| ≤ e−t(−∆)m |ϕ|, m ≥ 2, ϕ ∈ L2(Rn),(1.6)

where H is the self-adjoint operator associated with the maximal nonnegative closed form Qmax

( See (1.4) above ). Hence it seems that the study of the C∞c -form core question for Qmax is

very nontrivial for higher order cases under the most general assumption of 0 ≤ V ∈ L1
loc. In

particular, the higher order semigroup e−tH loses the connection of stochastic process because

of the non-positivity of the kernel, thus it is difficult to use the tools of probability theory based

on Feymann-Kac formula for the Schrödinger operator (e.g. see [21]).

On the other hand, it is well known that there is also a famous KLMN-form perturbation

method to deal with this kind of problem (see [14]). For instance, if V ∈ Ln/2m(Rn) for n > 2m,

then V is the infinitesimally small form perturbation of (−∆)m on Wm,2(Rn) ( see Davies and

Hinz [7], Zheng and Yao [24]), that is, for any ε > 0, there exists a constant bε > 0 such that

|〈V f, f〉| ≤ εQ0(f, f) + bε〈f, f〉, f ∈Wm,2(Rn).(1.7)

Hence D(Qmax) = Wm.2(Rn) and C∞c (Rn) is the form core of Qmax. It is remarkable that the

perturbation method can work well for the potential with the sign change and also cover some

important singular classes potential, such as Kato class potential including the O( 1
|x|α ) for some

α > 0 depending on N,m (e.g. see [7] [16] [24]). However, the global uniformly integrability

of V which is necessary to the perturbation also restricts application to many local integrable

functions, such as the typical polynomials potentials including square oscillator |x|2 et al. In

fact, E. B. Davies [5, p.94] has verified that the C∞c (Rn) is the form core of the Qmax for any

0 ≤ V ∈ C∞(Rn). Clearly, an affirmative answer to general rough potentials would have more

interesting applications in the study of spectra and semigroups.

In this note, the authors mainly prove that C∞c (Rn) is the form core of the domain D(Qmax)

using only locally integrable condition on V . As a corollary, we also obtain the same result of

E. B. Davies concerning all smooth non-negative potentials. Finally, we use the form core result

to establish the sharp bound of the kernel of semigroup e−tH .

Our main results are as follows:

Theorem 1.1. Let 0 ≤ V ∈ Lploc(R
n) where p = n/2m if n > 2m, p > 1 if n = 2m and

p = 1 if n < 2m. Let Qmax be the maximal non-negative closed form with the form domain

D(Qmax) defined as in the (1.4). Then the space C∞c (Rn) is a form core of the form Qmax, that

is, C∞c (Rn) is a dense subset of the Hilbert space D(Qmax) with respect to the norm

‖f‖Qmax :=
(
Qmax(f, f) + (f, f)

)1/2
(1.8)

Note that, if 0 ≤ V ∈ C(Rn), then V ∈ L∞loc(Rn) ⊂ Lploc(R
n) for any p ≥ 1. Hence

Theorems 1.1 is true for any nonnegative continuous potentials including nonnegative C∞-class,
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which cannot be covered by any perturbation class. Thus we immediately obtain the following

corollary.

Corallary 1.1. Let 0 ≤ V ∈ C(Rn) and the maximal closed form Qmax be defined by the

(1.4). Then the space C∞c (Rn) is the form core of the Qmax.

Remark 1.1. (i) When n < 2m, the local integrable conditions of V in Theorems 1.1 are

optimal. If n ≥ 2m ≥ 4, then the minimal integrable indexes p of the positive potential V

are unknown at present as concerned as the form core. Moreover, the poly-harmonic operator

(−∆)m studied in this paper can be replaced with some trivial changes by any positive elliptic

operator P (D) of order 2m.

(ii) The potential V in Theorem 1.1 also can be allowed to contain a small negative part.

Let V = V+ − V−. If the positive part V+ is the potential of Theorem 1.1 and the negative part

V− satisfies the form perturbation, i.e. there exist positive constants a < 1 and b > 0 such that∫
Rn
V−|f |2dx ≤ a

(∫
Rn

((−∆)mf)fdx+

∫
Rn
V+|f |2dx

)
+ b

∫
Rn
|f |2dx, f ∈ C∞c (Rn).(1.9)

then the form sum
∫
|(−∆)m/2f |2dx+

∫
V |f |2dx is a semi-bounded closed form on Wm,2(Rn)∩

D(V
1/2

+ ) and C∞c (Rn) is the form core. The characterizations of V satisfying the estimate (1.9)

is well known and can be found in Mazya [13, Chapter 12]. In particular, the inequality (1.9)

holds if V belongs to Kato class K2m(Rn), which was introduced by Kato[10] for m = 1 and

generalized to higher order cases in Davies and Hinz [7], Zheng and Yao [24], also see Schechter

[16] for some similar classes adapted to general partial differential operators.

(iii) Given any domain Ω ⊂ Rn, the maximal and minimal forms are dramatically different

even in the case of V = 0. For instance, as m = 1, there exist two clearly different forms

associated with two different self-adjoint Laplaces: −∆D with Dirichlet boundary condition

and −∆N with Newmann boundary condition, and their form domains are the Sobolev spaces

Wm,2
0 (Ω) and Wm,2(Ω), respectively. However, let QΩ

0 be the closure of the form (f, g) →∫
Ω(−∆)mfgdx on C∞c (Ω) × C∞c (Ω), and 0 ≤ V ∈ Lploc(Ω) with the same p as in Theorem 1.1.

Then similarly, we can show that the form sum

QΩ(f, g) = QΩ
0 (f, g) + 〈V 1/2f, V 1/2g〉(1.10)

is closed on D(QΩ) = {Wm,2
0 (Ω); V 1/2f ∈ L2(Ω)} and C∞c (Ω) also is its form core.

The paper is organized as follows: Section 2 mainly is devoted to the proof of theorems and

in Section 3 we give an application to the sharp bound of the kernel of e−t((−∆)m+V ) for m ≥ 2

under the same assumption on V as in Theorem 1.1.

2 The proofs of results

In this section, we will prove Theorems 1.1. Our main method can be viewed as the continuation

of the semigroup approach used by Kato [11] and Simon [19] for the second-order cases. Com-

paring with the Schrödinger operators ( i.e. m = 1 ), since e−t(−∆)m(m ≥ 2) are not positivity
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reserving for any t > 0, it seems hard to prove the higher order Schrödinger semigroup e−tH has

the “ultracontractive” regularity from L2 to L∞ for t > 0 by the Trotter-Kato product formula

(see e.g. Davies [3]). Nevertheless, the analyticity of e−tH and Sobolev embedding can help to

gain partial Lp-Lq bounds again. Now let us begin with the following useful lemma.

Lemma 2.1. Let f ∈Wm,2(Rn) and θ = n
2m(1− 2

q ) where 2 ≤ q ≤ 2n/(n− 2m) if n > 2m,

2 ≤ q <∞ if n = 2m and 2 ≤ q ≤ ∞ if n < 2m. Then f ∈ Lq(Rn) and there exists a constant

Cm,n > 0 such that the following inequality holds:

‖f‖Lq(Rn) ≤ Cm,n‖(−∆)m/2f‖θL2(Rn)‖f‖
1−θ
L2(Rn)

(2.1)

where (−∆)m/2 is understood as the square root of (−∆)m on L2(Rn) ( also see the (1.2) of

Section 1 ).

It is obvious that f ∈ Lq(Rn) is a corollary of the classical Sobolev embedding Theorem

Wm,2(Rn) ↪→ Lq(Rn). For the embedding inequality (2.1), it seems to be very basic and also

can be simply proved by the methods of Fourier analysis. For convenience, its proof is given as

follows:

Proof. We begin with the proof for the case n > 2m. By the Hardy-Littlewood-Sobolev inequal-

ity (see [23, p. 354]), there exists some constant cm,n > 0 such that

‖f‖
L

2n
n−2m

≤ cm,n‖(−∆)m/2f‖L2 , f ∈Wm,2(Rn).

Thus ∀q ∈ [2, 2n
n−2m ], it follows from a simple interpolation argument that

‖f‖Lq ≤ ‖f‖θ
L

2n
n−2m

‖f‖1−θ
L2 ≤ Cm,n‖(−∆)m/2f‖θL2‖f‖1−θL2

for some constant Cm,n > 0 and θ = n
2m(1− 2

q ).

Next, let us turn to the proof of the case n ≤ 2m. Let q satisfy the assumption of Lemma

2.1 and q′ be the conjugate index of q. If we can prove that f̂ ∈ Lq′(Rn) for n ≤ 2m and

‖f̂‖Lq′ (Rn) ≤ Cm,n‖(−∆)m/2f‖θL2(Rn)‖f‖
1−θ
L2(Rn)

,(2.2)

for some constants Cm,n > 0 and θ = n
2m(1 − 2

q ), then Lemma 2.1 can be concluded by using

Young’s inequality.

Finally, we come to prove the inequality (2.2) with q′ > 1 if n = 2m and q′ ≥ 1 if n < 2m.

Consider ∫
Rn
|f̂(ξ)|q′dξ≤

∫
B(0,R)

|f̂(ξ)|q′dξ +

∫
Rn\B(0,R)

||ξ|mf̂(ξ)|q′ |ξ|−mq′dξ

≤CRn(1− q
′
2

)‖f‖q
′

L2 + CR
(n− 2q′m

2−q′ )(1−
q′
2

)‖(−4)m/2f‖q
′

L2 ,(2.3)

where B(0, R) is the ball centered at origin with radius R which will be chosen later. In fact,

we use the Hölder’s inequality and the fact that n < 2q′m
2−q′ in the last inequality of (2.3), then
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the desired (2.2) follows by choosing

R =
(
‖f‖L2‖(−4)m/2f‖−1

L2

)− 1
m
,

in the last inequality of (2.3). Thus we finish the proof of lemma.

The proof of Theorem 1.1:

Firstly, we will prove that the subset Lq(Rn)∩D(Qmax) is a form core of Qmax, where q is

any index defined in Lemma 2.1. To this aim, let H be the non-negative self-adjoint operator

with the domain D(H) associated to the form Qmax defined in the (1.4), see Kato [12]. Then it

is known that the domain D(H) is a form core of Qmax and H generates an analytic semigroup

e−tH on L2(Rn) which satisfy that

‖e−tH‖L2−L2 + ‖tHe−tH‖L2−L2 ≤ C(2.4)

for all t > 0. Let ft := e−tHf for f ∈ L2(Rn) and t > 0. Since D(H) ⊂ D(Qmax) ⊂ Wm,2(Rn)

thus we have that ft ∈Wm,2(Rn). Hence from Lemma 2.1 we have

‖ft‖Lq(Rn) ≤ Cm,n‖(−∆)m/2ft‖θL2(Rn)‖ft‖
1−θ
L2(Rn)

.(2.5)

where θ = n
2m(1 − 2

q ) ∈ [0, 1] and q is any index defined in Lemma 2.1. On the other hand, by

the (1.4) of Section 1 and Cauchy-Schwarz inequality

‖(−∆)m/2ft‖L2(Rn)≤
(
Qmax(ft, ft)

)1/2
=
(
〈Hft, ft〉

)1/2
(2.6)

≤‖Hft‖1/2L2(Rn)
‖ft‖1/2L2(Rn)

.

Therefore by combining (2.5) with (2.6), it follows from (2.4) that

‖e−tH‖Lq(Rn) = ‖ft‖Lq(Rn) ≤ C‖Hft‖
θ/2
L2(Rn)

‖ft‖1−θ/2L2(Rn)

≤C ′t−θ/2‖f‖L2(Rn) = C ′t
− n

2m
( 1
2
− 1
q

)‖f‖L2(Rn),

which states that e−tH is bounded from L2(Rn) to Lq(Rn) for any t > 0. This implies that

Ran(e−H) ⊂ Lq(Rn).(2.7)

Now, if we can show that Ran(e−H) is a form core of Qmax, then the embedding (2.7) will

conclude that Lq(Rn) ∩D(Qmax) is a form core of Qmax. In fact, since D(H) is a form core of

Qmax, hence it suffices to prove that Ran(e−H) is dense in D(H) in the sense of the norm (1.8).

Note that Ran(e−H) ⊂ D(H) is an invariant subspace of semigroup e−tH ( i.e. a subspace W is

invariant if e−tH(W ) ⊆W for any t > 0 ), thus if we can prove that Ran(e−H) is also dense in

L2(Rn), then it follows from semigroup property (see e.g. Reed and Simon [14]) that Ran(e−H)

will be the operator core of H, that is, Ran(e−H) is dense in D(H) in the sense of the graph

norm

‖f‖H :=
(
‖Hf‖2L2 + ‖f‖2L2

)1/2
(2.8)
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which is stronger than the form norm (1.8). Therefore, finally, we just need to prove that

Ran(e−H) is dense in L2(Rn), which equivalently, say that Ker(e−H) = {0} in view of the self-

adjointness of the e−H . Now let e−Hf = 0 for some f ∈ L2(Rn). Then we have e−tHf = 0

for t ≥ 1. Since the semigroup e−tHf is analytic on t > 0, so e−tHf = 0 for any t > 0, which

deduces f = 0 as t ↓ 0. Thus we can conclude that the subset Lq(Rn) ∩D(Qmax) is a form core

of Qmax.

Next, we will show that the set

Aq := Lqcomp(Rn) ∩D(Qmax)

is a form core of Qmax for any q defined in Lemma 2.1, where Lpcomp(Rn) is the subset of Lp(Rn)

with compact support. To this end, let ψ ∈ C∞c (Rn) and f ∈ D(Qmax) = Wm,2(Rn)∩D(V 1/2),

where D(V 1/2) = {f ∈ L2; V 1/2f ∈ L2}. Then clearly, ψf ∈ D(V 1/2). Moreover, by the

Leibnitz’ formula we have

Dα(ψf) =
∑
γ

Cm,γD
γfDα−γψ(2.9)

for any |α| ≤ m. Hence it follows from (2.9) that ψf ∈Wm,2(Rn) and thus ψf ∈ D(Qmax). Let

η ∈ C∞c (Rn), 0 ≤ η ≤ 1, supp η ⊂ B(0, 2) and η(x) = 1 for x ∈ B(0, 1), where B(x, r) is the ball

centered at x with radius r. For any f ∈ Lq(Rn) ∩D(Qmax), set fk = η(·/k)f for k = 1, 2 · · · ,
then fk ∈ Aq and there exists some constant C > 0 independent of k such that

‖fk − f‖Qmax ≤ C
(
‖fk − f‖Wm,2 + ‖V 1/2(fk − f)‖L2

)
(2.10)

Hence by the (2.9), (2.10) and the domination convergence theorem it is easy to get that fn → f

as n → ∞ in the sense of the norm (1.8), which shows that the set Aq is dense subset of

Lq(Rn)∩D(Qmax). Thus the set Aq is also a form core of Qmax for any q defined in Lemma 2.1.

Finally, in order to prove that C∞c (Rn) is a core of the form Qmax, it suffices to show

that C∞c (Rn) is dense in the set Aq ( i.e. Lqcomp(Rn) ∩ D(Qmax) ) for some q from Lemma

2.1. Let 0 ≤ ϕ ∈ C∞c (Rn) satisfy
∫
ϕ(x)dx = 1 and supp ϕ ⊂ B(0, 1). For any f ∈ Aq, set

fδ = ϕδ ∗ f where ϕδ(x) = δ−nϕ(x/δ) for any δ > 0. Then obviously, fδ ∈ C∞c (Rn). Since

f ∈ D(Qmax) = Wm,2(Rn) ∩D(V 1/2), we have

Dαfδ → Dαf in L2(Rn)

as δ → 0 for all 0 ≤ |α| ≤ m. Hence ‖fδ−f‖Wm,2 → 0 as δ → 0. In view of the (2.10), it suffices

to prove ‖V 1/2(fδ − f)‖L2 → 0 as δ → 0. Note that fδ and f both have compact supports

contained in some bounded ball K for δ ≤ 1. If n ≥ 2m, then by Hölder’s inequality and the

assumption V ∈ Lploc(R
n) we have that∫

K
V |fδ − f |2dx ≤

(∫
K
V pdx

)1/p(∫
Rn
|fδ − f |qdx

)2/q
→ 0,(2.11)

as δ → 0, where p = n/2m and q = 2n/(n − 2m) if n > 2m ( we choose q = 2p/(p − 1) for

some p > 1 if n = 2m ). Thus we have shown that C∞c (Rn) is a core of the form Qmax if
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n ≥ 2m. If n < 2m, then we can choose q = ∞ and f ∈ A∞ = L∞comp(RN ) ∩D(Qmax) . Since

|fδ| ≤ |f | ∈ L∞comp and ‖fδ − f‖L2 → 0 as δ → 0, we can choose some subsequence δi → 0 such

that V (fδi − f) → 0 a.e. as δi → 0, and |V (fδi − f)| ≤ C|V | ∈ L1(K). Thus it follows from

Lebesgue domination theorem that ‖V 1/2(fδi − f)‖L2 → 0 as δi → 0. Hence we have completed

the whole proof of Theorem 1.1.

As a corollary of Theorem 1.1, we will give a specific description of the domain D(H) of the

self-adjoint operator H associated to the maximal form Qmax.

Proposition 2.1. Let V satisfy the same condition as Theorem 1.1 and H be the unique

self-adjoint operator associated with the form Qmax defined by the (1.4). Then

D(H) =
{
f ∈ D(Qmax);

(
(−∆)mf + V f

)
dist
∈ L2(Rn)

}
(2.12)

and Hf =
(
(−∆)mf + V f

)
dist

in the distributional sum sense.

Proof. Let H̃ be an operator given by H̃f = (−∆)mf +V f in distributional sum sense with the

domain

D(H̃) =
{
f ∈ D(Qmax);

(
(−∆)mf + V f

)
dist
∈ L2(Rn)

}
(2.13)

Note that as f ∈ Qmax and V ∈ L1
loc(Rn), then V 1/2 ∈ L2

loc(Rn) and V 1/2f ∈ L2
loc(Rn), which

gives V f ∈ L1
loc(Rn) by Hölder inequality. This explains the meaning of distributional sum in

the definition of H̃ above. In the sequel, we will prove that H̃ = H.

First, by the construction of H, we have

D(H) =
{
f ∈ D(Qmax);∃g ∈ L2 such that Qmax(f, u) = 〈g, u〉; ∀u ∈ D(Qmax)

}
.(2.14)

Let f ∈ D(H). Then since C∞c (Rn) ⊂ D(Qmax), by the definition of distributional derivative

and the fact that V f ∈ L1
loc(Rn), we get that for any u ∈ C∞c (Rn)

Qmax(f, u) =

∫
Rn
H̃f(x)u(x)dx = 〈g, u〉(2.15)

Hence f ∈ D(H̃) and H̃f = g, i.e. H ⊆ H̃. On the other hand, let f ∈ D(H̃) and g = H̃f ∈ L2.

Then by (2.15) again we can get that Qmax(f, u) = 〈g, u〉 for any u ∈ C∞c (Rn). Since C∞c (Rn)

is the form core of Qmax by Theorem 1.1, hence it follows from the density arguments and the

(2.14) that f ∈ D(H) and Hf = g, i.e. H̃ ⊆ H. Thus we complete the proof of Proposition

2.1.

3 An application to sharp bounds of semigroup kernel

Let H = H0 + V be the self-adjoint operator associated with the maximal form Qmax defined

by the (1.4), where H0 is any nonnegative homogeneous elliptic operator of order 2m and

0 ≤ V ∈ L1
loc(Rn).
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Since H ≥ 0, it generates a contractive semigroup e−tH on L2(Rn). If m = 1, it is known

from the theory of the Dirichlet forms that Schrödinger semigroup can be extended to a con-

tractive semigroup Lp(Rn) for any 1 ≤ p <∞ (see [3, Theorem 1.3.5]). The integral expression

of e−tH is given by the famous Feynman-Kac formula, and the whole theory was profoundly en-

riched by the connection to the Brownian motion (see [21], [22]). In particular, if H = −∆ +V ,

then the kernel K(t, x, y) of Schrödinger semigroup e−tH satisfies the following sharp estimates:

0 ≤ K(t, x, y) ≤ et∆(x, y) = (4πt)−n/2 exp
{
− |x− y|

2

4t

}
.(3.1)

However, for 2m ≥ 4, the situations are much complicated and depending upon dimension n

and order m. Generally, if n > 2m ≥ 4, then the semigroup e−tH has the Lp-extension for

p ∈ [pc, p
′
c] where pc = 2n/(n+ 2m) and for any value of p outside the interval [pc, p

′
c] there exist

some counter-examples constructions of H such that e−tH are unbounded on Lp(Rn) for any

t > 0 as n ≥ 2m+ 3 ( see [5]). However, if n < 2m, then e−tH can be extended into a strongly

continuous semigroup on Lp(Rn) for any p ∈ [1,∞) and its kernel has the following upper bound

with some parameter c, d > 0(see Barbatis and Davies [1, Proposition 5.2]):

|K(t, x, y)| ≤ Ct−n/2m exp
{
− c |x− y|

2m/2m−1

t1/2m−1
+ dt

}
.(3.2)

In particular, if H = (−∆)m, then the estimate (3.2) can be improved as follows:

|K(t, x, y)| ≤ Crt−
n
2m exp

{
− dm

|x− y|2m/2m−1

rt1/2m−1

}
,(3.3)

where Cr > 0 for all r > 1 and

dm = (2m− 1)(2m)−
2m

2m−1 sin
π

4m− 2
.

As an application of Theorem 1.1, we can easily extend the sharp bound (3.3) to the case

H = (−∆)m + V with any nonnegative potential V as following:

Theorem 3.1. Let H = (−∆)m+V be the self-adjoint operator associated with the maximal

form Qmax defined by the (1.4). If 2m > n and 0 ≤ V ∈ L1
loc(Rn), then

|K(t, x, y)| ≤ Crt−
n
2m exp

{
− dm

|x− y|2m/2m−1

rt1/2m−1

}
,(3.4)

where Cr > 0 for all r > 1 and

dm = (2m− 1)(2m)−
2m

2m−1 sin
π

4m− 2
.

Proof. By Theorem 1.1, we know that Cc(Rn) is the form core of Qmax. Thus the desired

sharp bound can immediately be obtained by combining the methods used in Theorem 4.3 and

Proposition 5.2 of Barbatis and Davies [1].
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Remark 3.1. When H0 is any nonnegative homogeneous elliptic operator of order 2m with

2m > n and 0 ≤ V ∈ L1
loc(Rn), the sharp kernel bound above is also true for the general operator

H0 + V only with some different constant dm. Moreover, such methods and results above can

also be extended to the signed potential V satisfying the following strongly subcritical condition

that there exists some constant µ ∈ (0, 1) such that∫
Rn
V−|f |2dx ≤ µ

(∫
Rn
|H1/2

0 f |2dx+

∫
Rn
V+|f |2dx

)
,(3.5)

holds for all f ∈Wm,2(Rn) such that
∫
Rn V+|f |2dx <∞ ( see e.g. [8] ).
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