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Abstract

By introducing B spline interval wavelets to the 3D wavelet moments, we give a new representation
for 3D objects. The new descriptors can keep more information of the edge. They are invariant to
translation, rotation and scale, and have the multi-resolution features in the radial direction, which
can handle noise to some extent and provide multi-level features to satisfy various requirements. With
the Pearson correlation coefficient and the energy in each level, we give a new method to measure the
similarity of two objects. In the experiment, it is proved to be an efficient method.

Keywords: B Spline Interval Wavelets; Moments; Spherical Harmonics; Pearson Correlation Coefficient

1 Introduction

With the development of 3D CAD, games, and web application etc., more and more 3D models
pour into our life. It demands an efficient retrieval system to recognize similar objects for further
decision. For shape descriptors of 3D objects, there are several methods, such as shape distri-
bution [15], reflective symmetry descriptors [9], 3D Fourier descriptors [10], spherical harmonics
descriptors [11] and 3D Zernike moments [13], etc. Here, 3D Zernike moments, as the extension
of 2D Zernike moments, are invariant to rotation, are complete in L2(R3) and have no redundant
information. We have extended the 2D wavelet moments to the 3D case by introducing the spher-
ical harmonics together with the wavelet function in [3]. They are invariant to rotation and have
the multi-level trait, which are consistent with the 2D wavelet moments. Moreover they overcome
the complex computation of high order Zernike moments and have the advantage on identifica-
tion of the similar objects. In the past, with Mallat algorithm of the wavelets and fractal scale,
we have given fractal scale descriptors based on 2D wavelet moments for gait sequence. They
are proved to be an efficient method in gait recognition [4, 14]. Furthermore the combination
of Mallat algorithm and fractal scale is shown as a good method in 3D objects recognition [5].
While the objects in reality are finite and the edge of objects are more important, it is natural to
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consider the wavelets on the interval in the 3D wavelet moments. In 1993, Cohen and Daubechies
present wavelets on the interval [2], which can directly be constructed by the classical orthonor-
mal wavelets, specially by Daubechies wavelets. The generalized Mallat algorithm still holds. So
we introduce the Daubechies interval wavelets on [0, 1] in 3D wavelet moments in our paper [6].
However the B spline wavelets are more efficient in pattern recognition field. Quak and Weyric
presented the B spline interval wavelets and give the algorithm in [16], which are more suitable to
character objects. Replacing the Daubechies interval wavelets to B spline wavelets is meaningful
in practice.

Furthermore, since the wavelets are used, the new descriptors contain low-pass and high-pass
part, which are very different in energy. Only using Euclidean distance to measure the similarity
of two objects could ignore the different in high-pass part. Pearson correlation coefficient is known
as a better method to measure two vectors with different scale. It measures the strength and
direction of a linear relationship between the two vectors [8]. In this paper, we try to get weighed
Pearson correlation coefficient according their decomposition level and energy. Moreover together
with the globe Pearson correlation coefficient of the descriptors, we get a new distance which is
called Pearson distance of two objects.

In this paper, we develop 3D B spline interval wavelet moments by using B spline wavelets on
the interval [0, 1], which maintain the edge of the objects. In the following paper we recall the
definition and general computation step of 3D wavelet moments. Then we list the mean idea
of wavelets on the interval, give the new definition of 3D B spline interval wavelet moments in
detail, and together with Mallat algorithm we give the new descriptors of 3D objects. In Section
4, we do some experiments to test our algorithm in a middle database. Finally, some conclusions
are shown.

2 3D Wavelet Moments

2.1 Definition of 3D Wavelet Moments

Translation invariant and scaling invariant can be achieved using the geometric moments as
follows, like in [7].

The (p, q, r) degree geometric moments of f(x, y, z) defined on field Ω are

mpqr =

∫ ∫ ∫
Ω

xpyqzrf(x, y, z)dxdydz, p, q, r ∈ N.

Since the center of the shape is invariant to translation, rotation and scale, the method of solving
the translation problem is to locate the centroid of the object. The coordinates of the center
(X0, Y0, Z0) are

X0 = m100/m000, Y0 = m010/m000, Z0 = m001/m000.

The scaling factor of the present object size, compared with the expected constant size V0 is
α = 3

√
m000/V0. In this way, we can obtain the translation and scale normalized shape by

changing the coordinates according to the transformation
x

y

z

 →


(x−X0)/α

(y − Y0)/α

(z − Z0)/α

 .
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Let f(x, y, z) represent a 3D object in the (x, y, z)-coordinate, and its corresponding form in the
polar coordinate is f̃(r, θ, ϕ). The relationship between f(x, y, z) and f̃(r, θ, ϕ) is given by

x = r cos(θ) sin(ϕ), y = r sin(θ) sin(ϕ), z = r cos(ϕ),

where r ∈ [0,∞), θ ∈ [0, 2π], ϕ ∈ [0, π].

In the rest of our paper, for convenience suppose f(x, y, z) and f(r, ϕ, θ) respectively represent
a normalized object f in Cartesian and polar coordinate.

The spherical harmonics is used to get rotation invariant moments like in 3D Zernike moments.

Definition 1 [3] Suppose ψ(r) is a wavelet function, f(r, ϕ, θ) is normalized 3D object defined
on field Ω. Its 3D wavelet moments are

Fwavelets
pqlm =

∫ ∫ ∫
Ω

f(r, ϕ, θ)ψpq(r)Y m
l (ϕ, θ)r2 sin(ϕ)drdϕdθ, (1)

where ψpq(r) = 2p/2ψ(2pr − q), p, q ∈ Z, Y m
l (ϕ, θ) is the spherical harmonics, −l ≤ m ≤ l, l ∈

N,m ∈ Z.

Here spherical harmonics Y m
l (ϕ, θ) is given by

Y m
l (ϕ, θ) = Nm

l P
m
l (cos(ϕ)) exp(imθ),

where Nm
l is a normalization factor

Nm
l =

√
(2l + 1)(l −m)!

4π(l +m)!
,

and Pm
l (x) denotes the associated Legendre functions,

Pm
l (x) = (1− x2)m/2 d

m

dxm
Pl(x),

where Pl(x) =
1
2ll!

dl

dxl (x
2 − 1)l is Legendre polynomial.

The vector of spherical harmonics Yl = (Y l
l , Y

l−1
l , H · · · , Y −l

l )T for a given l forms the basis of
a (2l + 1)-dimensional subspace, which is invariant under the options of the full rotation group
[13]. Then let Fpl = (Fpll, Fpl(l−1), · · · , Fpl(−l))

T , the L2-norm ∥Fpl∥2 is invariant to the rotation.

As a result, 3D wavelet moments descriptors {∥Fpl∥2}pl are invariant to translation, scaling and
rotation.

2.2 Completeness and Computation of the Wavelet Moments

By introduce wavelet, the wavelet moments can represent the object f ∈ L2(R3)[3].

Theorem 1 [3] Suppose Ψpqlm(r, ϕ, θ) = 1
r
ψpq(r)Y m

l (ϕ, θ), for p, q ∈ Z, −l ≤ m ≤ l, l ∈ N,
m ∈ Z, we get

⟨Ψpqlm,Ψp′q′ l′m′ ⟩ = δpp′δqq′δll′δmm′ ,
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f =
∑
p∈Z

∑
q∈Z

∞∑
l=0

l∑
m=−l

⟨f,Ψpqlm⟩Ψpqlm,

where ⟨f, g⟩ =
∫ ∫ ∫

R3 f(r, ϕ, θ)g(r, ϕ, θ)r
2 sin(ϕ)drdθdϕ

From Theorem 1, the 3D wavelet moments are orthogonal and complete. 3D wavelet moments
get the global and local characters and make the complete representation of 3D objects.

Furthermore there exists fast algorithm for the computation of 3D wavelet moments. Suppose

Slm(r) =

∫ 2π

0

∫ π

0

f(r, ϕ, θ)Y m
l (ϕ, θ) sin(ϕ)dϕdθ. (2)

The computation of Fwavelets
pqlm can be reduced to compute

Fwavelets
pqlm =

∫ ∞

0

Slm(r)ψpq(r)r
2dr. (3)

The formula (2) can be gained by the fast algorithm of spherical harmonics, which uses the 1D
fast Fourier transform and the iteratively fast algorithm of Legendre polynomial [12]. Moreover
Mallat algorithm of the wavelets can be used to compute the formula (3). Together with the fast
algorithm of formula (2), the computation of 3D wavelet moments invariant is double accelerated.
For the computational complexity, they have the superiority over the 3D Zernike moments. The
3D Zernike moments are computed by the weighted sum of the 3D geometric moments and are
related to the complexity of their computation [13], while the 3D geometric moments dramatically
increase in complexity and are not stabile to noise with increasing order.

3 B Spline Interval Wavelets in 3D Wavelet Moments

The definition of B spline wavelets on a bounded interval and its construction, as well as its Mallat
algorithm are shown in [16]. Based on these, new B spline interval wavelet moments descriptors
are presented. Meanwhile the time complexity of the new descriptors is discussed.

3.1 B Spline Interval Wavelets and Its Filters

Definition 2 Let t
(j)
m := {t(j)k }2j+m−1

k=−m+1, with

t
(j)
−m+1 = t

(j)
−m+2 = · · · = t

(j)
0 = 0,

t
(j)
k = k2−j, k = 1, · · · , 2j − 1,

t
(j)

2j
= t

(j)

2j+1
= · · · = t

(j)

2j+m−1
= 1,

be a knot sequence of mth order B splines on [0, 1] for any j ∈ N.

For this knot sequence, B splines are defined as

Bj
m,i(x) := (t

(j)
i+m − t

(j)
i )[t

(j)
i , t

(j)
i+1, · · · , t

(j)
i+m]t(t− x)m−1

+ ,
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where [·, · · · , ·]t is mth divided difference of (t− x)m−1
+ with respect to the variable t. We remark

that
suppBj

m,i = [t
(j)
i , t

(j)
i+m]

and
Bj

m,i(x) = Nm(2
jx− i), i = 0, · · · , 2j −m,

where Nm(x) := m[0, 1, · · · ,m]t(t − x)m−1
+ is the cardinal B spline of order m, while for i =

−m + 1, · · · ,−1, Bj
m,i(x) contains a multiple knot at point 0 and for i = 2j −m + 1, · · · , 2j − 1

a multiple knot at point 1.

For the Chui-Wang B spline wavelets ψm, the following fact was established in [1]:

ψj
i (x) : = ψm(2

jx− i)

=
1

22m−1

2m−2∑
k=0

(−1)kN2m(k + 1)B
j+1,(m)
2m,2i+k(x),

where B
j+1,(m)
2m,2i+k(x) is the mth derivative function of Bj+1

2m,2i+k(x). As

suppψj
i =

[
2i

2j+1
,
2i+ 4m− 2

2j+1

]
,

we have
suppψj

i ⊆ [0, 1], for i = 0, · · · , 2j − 2m+ 1.

Hence on all levels j with 2j ≥ 2m − 1, at least one, now we called inner wavelet, exists whose
support lies completely in [0, 1]. Let j0 ∈ N be the smallest number which satisfies

2j0 ≥ 2m− 1.

Here we have 2m− 2 boundary wavelet, and for the reason of symmetry, 1 boundary wavelet can
obtain from 0 boundary wavelet by an index transformation i→ 2j0 −2m+1− i. The 0 boundary
wavelets are

ψj0
i (x) : =

1

22m−1

[
−1∑

k=−m+1

αi,kB
j0+1,(m)
2m,k (x)

+
2m−2+2i∑

k=0

(−1)kN2m(k + 1− 2i)B
j0+1,(m)
2m,k (x)

]
, i = −m+ 1, · · · ,−1,

It can be shown [1] that the coefficients {αi,k}−1
k=−m+1 are the solution of the m− 1 linear systems

of equations
Bαi = ri, i = −m+ 1, · · · ,−1,

where i, l = −m+ 1, · · · ,−1,

B := (bl,k)
m−1
l,k=1, bl,k := Bj0+1

2m,−m+k(t
(j0)
l ),

ri := (ri,−m+1, · · · , ri,−1)
T ,

ri,l := −
2m−2+2i∑

k=0

(−1)kN2m(k + 1− 2i)N2m(2m+ 2l − k),
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αi := (αi,−m+1, · · · , αi,−1)
T .

Based on these, the scaling and wavelet functions are

ϕj
k(x) =


Bj0

m,k(2
j−j0x), k = −m+ 1, · · · ,−1,

Bj0
m,2j−m−k

(1− 2j−j0x), k = 2j −m+ 1, · · · , 2j − 1,

Nm(2
jx− k), k = 0, · · · , 2j −m.

ψj
k(x) =


ψj0
k (2j−j0x), k = −m+ 1, · · · ,−1,

ψj0
2j−2m+1−k

(1− 2j−j0x), k = 2j − 2m+ 2, · · · , 2j −m,

ψj0
m(2jx− k), k = 0, · · · , 2j − 2m+ 1.

The dual scaling and wavelet functions are satisfied

< ϕ̃j
k, ϕ

j
k′ >=

∫ 1

0

ϕ̃j
k(x)ϕ

j
k′(x)dx = δkk′ ,

< ψ̃j
k, ψ

j
k′ >=

∫ 1

0

ψ̃j
k(x)ψ

j
k′(x)dx = δkk′ , k, k′ = −m+ 1, · · · , 2j − 1

Meanwhile

ϕ̃j
k(x) =

2j−1∑
l=−m+1

gjk,lϕ
j
l (x), k = −m+ 1, · · · , 2j − 1

ψ̃j
k(x) =

2j−m∑
l=−m+1

hjk,lϕ
j
l (x), k = −m+ 1, · · · , 2j −m

with gj
k := (gjk,−m+1, g

j
k,−m, · · · , g

j
k,2j−1

)T ,hj
k := (hjk,−m+1, h

j
k,−m, · · · , h

j
k,2j−m

)T . That is

gj
k = (Cj)−1ek,

hj
k = (Dj)−1ek,

where
Cj := (cjk,l)

2j

k,l=−m+1, cjk,l :=< ϕj
k, ϕ

j
l >,

Dj := (djk,l)
2j−m
k,l=−m+1, djk,l :=< ψj

k, ψ
j
l >,

ek is kth unit vector and

cjk,l = 0, if |k − l| > m− 1, djk,l = 0, if |k − l| > 2m− 2.

Then the two-scale equations are

ϕj
k(x) =

2j+1−1∑
l=−m+1

pjk,lϕ
j+1
l (x), k = −m+ 1, · · · , 2j − 1,

ψj
k(x) =

2j+1−1∑
l=−m+1

qjk,lϕ
j+1
l (x), k = −m+ 1, · · · , 2j −m,
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where pjk,l, q
j
k,l are the low-pass and high-pass filters. Taking inner products with ϕ̃j+1

k (x) in above
equations yields

pjk′,k =< ϕ̃j+1
k′ , ϕj

k >, k′ = −m+ 1, · · · , 2j+1 − 1, k = −m+ 1, · · · , 2j − 1,

qjk′,k =< ϕ̃j+1
k′ , ψj

k >, k′ = −m+ 1, · · · , 2j+1 − 1, k = −m+ 1, · · · , 2j −m,

Here pk′,k, qk′,k are the filters of interval B spline wavelets.

The decomposition filters of m = 3 are listed in Table 1.

Table 1: The filter coefficients pik,l, q
i
k,l for the case m = 3

p q p0 p1 q0 q1

0.125 0.0044 0.5 0.25 2.1790 −0.1981

0.375 −0.1289 0.25 0.375 −2.6495 −0.07439

0.375 0.6533 – −0.125 1.5768 0.6441

0.125 −1.3467 – – −0.6613 −1.3463

– 1.3467 – – 0.1289 1.3467

– −0.6533 – – 0.0044 −0.6533

– 0.1289 – – – 0.1289

– -0.0044 – – – 0.0044

Remark: p and q respectively denote the low and hight pass inner filters, and p0, p1 denote the
two edge low pass filters, and q0, q1 denote the two edge high pass filters.

Let f := {f [0], f [1], · · · , f [2N +m−2]} denote a signal, and f1 := {f1[0], f1[1], · · · , f1[2N−1+
m−2]} and g1 := {g1[0], g1[1], · · · , g1[2N−1+m−2]} respectively denote its decomposition signal
by low pass and high pass filters in one level. When m = 3, the decomposition is

f1[0] =
1∑

j=0

f [j] ∗ p0[j];

f1[1] =
2∑

j=0

f [j + 1] ∗ p1[j];

f1[i] =
3∑

j=0

f [2i− 2 + j] ∗ p[j], i = 2, 3, · · · , 2N−1 − 1;

f1[2N−1] =
2∑

j=0

f [2N − j] ∗ p0[j];

f1[2N−1 + 1] =
1∑

j=0

f [2N + 1− j] ∗ p1[j];
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g1[0] =
5∑

j=0

f [j] ∗ q0[j];

g1[1] =
7∑

j=0

f [j] ∗ q1[j];

g1[i] =
7∑

j=0

f [2i− 2 + j] ∗ q[j], i = 2, 3, · · · , 2N−1 − 1;

g1[2N−1] = f [2N ] ∗ q0[0] + f [2N − 1] ∗ q0[1] + f [2N − 2] ∗ q0[2];
g1[2N−1 + 1] = f [2N + 1] ∗ q1[0] + f [2N ] ∗ q1[1].

3.2 B Spline Interval Wavelet Moments Descriptors for 3D Objects

In this way, by introducing B spline interval filters in 3D wavelet moments, we decompose the
Slm(r)r

2 in different level with the Mallat decomposition algorithm. Then combining the low-pass
and high-pass signals, we get new descriptors for 3D object.

Definition 3 For each object f(r, ϕ, θ) expressed in polar coordinate and defined on field Ω,
compute equation (3). Suppose the B spline interval wavelet degree is b, the sample number of
one dimensional signal Slm(r)r

2 is 2N , and decompose the sampling signal with Mallat algorithm
into M levels. Suppose J = N −M , they must satisfy 2J ≥ 2b − 1. Put the decomposed signals
together, we get

Ci,l
−J,k, C

l
−J,k, D

i,l
−j,k, D

l
−j,k, i = 0, 1, J ≤ j ≤ N − 1, l = 0, 1, 2, · · · , L− 1, k ∈ N,

where C i,l
−J,k is the L2 norm of the vector ci,l−J,k = (ci,l,l−J,k, c

i,l,l−1
−J,k , · · · , ci,l,−l

−J,k )
T , and {Ci,l,m

−J,k}k∈Z
is the ith edge low-pass coefficients of signal Slm(r)r

2 in level J . Like C i,l
−J,k, the other three

C l
−J,k, D

i,l
−j,k, D

l
−j,k are the interval (or edge) low pass ( or high pass) coefficients. Then we call

the vector
{C i,l

−J,k, C
l
−J,k, D

i,l
−j,k, D

l
−j,k}i,j,l,k

B spline interval wavelet moments descriptors.

Remark: The dimension of the descriptors is 2N ∗ L.

3.3 Time Complexity

The time complexity of our new descriptors will be discussed by comparing with 3D wavelet
moments descriptors. Because the real difference focuses on the radial integral, we only consider
the time complexity of the one dimension signal Slm(r)r

2. That is to compare them in a certain
phase (l,m). Here ψ(r) in 3D wavelet moments can be any wavelet function. In fact many
different filters can be used to get the descriptors. While in 3D wavelet moments [3], the cubic B
spline wavelet function is used, whose Gauss approximation form is

ψ(r) =
4ad+1√
2π(d+ 1)

· σω · cos(2πf0(2r − 1)) · exp
(
− (2r − 1)2

2σ2
ω(d+ 1)

)
,
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where a = 0.697066, f0 = 0.409177, σ2
ω = 0.561145, d = 3, p = 0, 1, 2, 3 · · · , q = 0, 1, 2, · · · , 2m+1.

According to this background, we discuss the time complexity of 3D wavelet moments with
cubic B spline wavelets and the interval wavelet moments with B spline wavelets. Suppose the
sampling number is 2N , M is the maximum number of q in wavelet moments, and that of the
decomposition level number of B spline interval wavelet moments. The maximum length of
interval B spline low-pass and high-pass filers is n.

1. The computation of the 3D wavelet moments descriptors (wavelet function is cubic B-spine)
is about (2M+2 +M − 1)2N cos(·) exp(·), where we must compute two complex functions.
The dimension of the descriptors is 2M+2 +M − 1.

2. The computation of all wavelet coefficients of M level in the interval B spline wavelet
moments is about (2N+1 − 2N−M+1) ∗ n. The dimension of the descriptors is 2N .

The computation complexity of the B spline interval wavelet moments descriptor is faster than
the wavelet moments when the decomposition level M is larger.

4 Experiments

In the experiments, we use the 3D model database from the Princeton Shape Benchmark [17]. We
use a database including 149 models (69 chairs and 80 planes), shown in Fig. 1. By precision-recall
curve, we compare different descriptors with different measure, see Figs. 2–4.

Wavelet moments descriptors with cubic B spline wavelets (Wav), Wavelet moments descriptors
with Db3 wavelet (Db), interval wavelet moments descriptors corresponding to Db3 (InterWav),
interval wavelet with B spline wavelets (m=3) (BInterWav) and these four methods with Pearson
distance (pWav, pDb, pInterWav, pBInterWav) are our main methods to simulate the 3D model
retrieval system. Given a test model in the database, we sort others by the similarity to the
model. All 3D objects in our database are normalized to be 1 m3. The filters are listed in Table
1.

Moreover other parameters are the sampling number N = 6, harmonic function parameter
L = 8 and decomposition level M = 4. The dimension of the wavelet moments with cubic B
spline wavelets descriptors is 538. The dimension of the other methods are the same 512.

In our experiment, we use the Euclidean distance and our Pearson distance to measure the
similarity of two descriptors for two objects. Our Pearson distance is put forward by weighted
Pearson correlation coefficient together with their energy in every level.

The definition of Pearson correlation coefficient of vectors x and y is

r =

∑
(x− x̄)(y − ȳ)√∑

(x− x̄)2
√∑

(y − ȳ)2

where x̄ and ȳ are the average of n-dimension vector x and y [8].

The correlation coefficient is a number between −1 and +1 that measures the degree of as-
sociation between two variables x and y. A positive value for the correlation implies a positive
association (large values of x tend to be associated with large values of y and small values of
x tend to be associated with small values of y). A negative value for the correlation implies a
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negative or inverse association (large values of x tend to be associated with small values of y and
vice versa). It characterize not their absolutely size but their change direction. It is useful to

Fig. 1: Several 3D models in our database
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Fig. 3: Precision-Recall curves of the four retrieval methods by Euclidean distance and Pearson distance
respectively

Precision−recall curve of the four methods by pearson distance
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Fig. 4: Precision-Recall curve of the four retrieval methods by Pearson distance

measure the similarity of two level descriptors.

Furthermore the energy of two descriptors is also important to character the objects. So we
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use Er to measure the energy similarity, which is defined by

Er = 1− |∥x∥ − ∥y∥|
max(∥x∥, ∥y∥)

where max(∥x∥, ∥y∥) means the maximum of the norms of x and y. Er is a number between 0
and 1. Large value of Er means the two objects more similar in energy.

cj,lr and dj,lr respectively denote the Pearson correlation coefficient of the low-pass part and
high-pass part of two objects in (j, l)th level, where N −M ≤ j ≤ N − 1, l = 0, · · · , L. Rl is the
whole Pearson correlation coefficient of two descriptors in lth level, where l = 0, · · · , L. Then the
similarity of two objects is defined by

Q =

∑L
l=0Erl ∗

(
2M ∗ cN−M,l

r + 2M ∗ dN−M,l
r + 2M−1 ∗ dN−M+1,l

r + · · ·+ 2 ∗ dN−1,l
r

2M + 2M + 2M−1 + · · ·+ 2
+ 2 ∗Rl

)
3 ∗ (L+ 1)

We call it Pearson distance of two object. The larger value of Q means more similarity of two
objects.

In Euclidean distance, the wavelet moments is better than the other three methods in Fig. 2.
However in Fig. 3, the Pearson distance is more suitable to character the similarity of this kind
of level descriptors. It gets higher precision and recall curve of every descriptor method. At
last, from the results in Fig. 4, we can see the interval B spline wavelet moments descriptor
with Pearson distance is better than the other methods in high precision rate. It is true because
the interval wavelet emphasize the edge of objects. Furthermore the average times of the two
methods are shown in Table 2 (CPU 2.50 GHz, 1 G memory). Compared with the original wavelet
moments descriptors, the interval B spline wavelet moments descriptors have some advantage in
time complexity.

Table 2: Time cost of the Wav and BInterWav descriptors

Time Wav BInterWav

Second 34.626 26.384

5 Conclusion and Future Work

In this paper, we propose interval B spline wavelet moments descriptors of 3D objects. We
evaluate it in a middle database and test the effect of the new method. From the experiments,
by introducing the interval B spline wavelets and Pearson correlation coefficient, we improve the
wavelet moments method in 3D retrieval system. Compared with wavelet moments, interval B
spline wavelet moments descriptors has simple computation, which is very favorable for large
3D system database recognition. Furthermore, when we extract multi-level fractal features from
coarsely to finely, the performance may be improved to some extent.

In the future experiment on a bigger database and more changes will be done to test our
method. Furthermore we can try to use different clustering methods to classify 3D objects by our
descriptors.
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