管理员登录 / English
What is $A_/infty$? A discussion about the equivalence of some properties of nonnegative functions.
发布时间: 2017-06-19     13:33   【返回上一页】 发布人:Javier Duoandikoetxea


 北京师范大学数学科学学院

 

周五公众报告

 

 

 

 

报告题目:What is $A_/infty$? A discussion about the equivalence of some properties of nonnegative functions.

 

 

报告人: Prof. Javier DuoandikoetxeaUniversidad del


País Vasco/Euskal Herriko Unibertsitatea
 Spain

 

 

时间地点:2017623日下午3:00-4:00, 后主楼1220

 

 

邀请人:薛庆营 教授

 

 

 

报告摘要:The $A_/infty$ class of weights in $/mathbb R^n$ admits several characterizations. They can be viewed as equivalent properties of nonnegative functions defined in $/mathbb R^n$. We discuss the equivalence (or not) of such properties when in the usual characterizations the basis of cubes of $/mathbb R^n$ is replaced by a different one. (Actually, we can work in the abstract setting of measure spaces.) We prove that there are some equivalences and several one-way implications without further assumptions on the basis, and we built counterexamples for the basis of balls centered at the origin to show that some of the implications fail in general. We are also able to deduce new characterizations of the usual $A_/infty$ weights.

 

 

周五学院公众报告主旨:讲解现代数学中的基本概念、重要结果及其数学思想的起源、方法的创新等,扩展我们的教师和研究生的视野、提高数学修养以及增强学院的学术氛围。邀请各方向的专家用通俗易懂的报告内容、自由互动的讲解方式展现现代数学中重要的基本概念和深刻原理,让听众可以领略到现代数学理论其实是来源于一些大学或研究生阶段就熟知的古典数学中的想法和结论。希望这些报告有助于高年级的本科生、研究生和教师更全面的认识现代数学、享受数学之美。欢迎大家踊跃参与!