管理员登录 / English
The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach
发布时间: 2018-10-30     09:40   【返回上一页】 发布人:杜增吉


北京师范大学数学科学学院

 

周五公众报告

报告题目:The existence of solitary wave solutions of delayed Camassa-Holm equation   via a geometric approach 

报告人:  杜增吉教授(江苏师范大学副校长)

 

时间地点: 11月2日上午10:00-11:00 后主楼1124

 

邀请人:  袁荣

 

报告摘要:In this talk, we discuss the Camassa-Holm equation, which is a model for shallow water waves. We first establish the existence of solitary wave solutions for the equation without delay. And then we prove the existence of solitary wave solutions for the equation with a special local delay convolution kernel and a special nonlocal delay convolution kernel by using the method of dynamical system, especially the geometric singular perturbation theory and invariant manifold theory. According to the relationship between solitary wave and homoclinic orbit, the Camassa-Holm equation is transformed into the ordinary differential equations with fast variables by using the variable substitution. It is proved that the equation with disturbance also possesses homoclinic orbit, and there exists solitary wave solution of the delayed Camassa-Holm equation. (jointly with Ji Li and Xiaowan Li).

 

报告人简介:杜增吉,江苏师范大学教授、博士、博士生导师、副校长,中国数学会奇异摄动专业委员会副理事长,江苏省333高层次人才中青年科学技术带头人,江苏省“青蓝工程”中青年学术带头人,江苏省优秀教育工作者。应邀到澳大利亚新南威尔士大学,美国德州农工大学、德克萨斯大学泛美分校,加拿大约克大学、纽芬兰纪念大学等进行访问研究。研究方向为微分方程与动力系统、奇异摄动理论及其应用等。在Journal of Functional Analysis, Journal of Differential Equations, Communications in Contemporary Mathematics, Journal of Mathematical Biology等数学杂志上发表SCI论文50多篇,在科学出版社出版专著《奇异摄动中的微分不等式理论》1部。主持国家自然科学基金项目5项(面上3项)和省部级项目多项。