管理员登录 / English
调和分析及偏微分方程系列讲座
发布时间: 2017-07-30     10:42   【返回上一页】 发布人:张平章志飞


  北京师范大学数学科学学院


调和分析及偏微分方程系列讲座

 

报告题目:Global  regularities of 2-D density patch for viscous inhomogeneous incompressible  flow with  general density

 

报告人:张平教授,长江特聘教授,国家杰出青年基金获得者 (中国科学院)

 

时间地点:201781日,上午10点至11点, 新主楼1124房间

 

邀请人: 陆国震 教授

 

 

报告摘要:This talkj presents some progress toward an open question proposed by P.-L. Lions /cite{Lions96}  concerning the propagation of regularities of density patch for viscous inhomogeneous incompressible flow.

We first establish  the global in time well-posedness of two-dimensional inhomogeneous incompressible Navier-Stokes system with initial density  $/r_0=/eta_1{/bf 1}_{/Om_0}+/eta_2{/bf1}_{/Om_0^c}$. Here $(/eta_1,/eta_2)$ is  any pair of positive  constants. (Joint work with Xian Liao).

 

 

 

 

报告题目:Global Cauchy-Kowalevski theorem for the Navier-Stokes equations

 

报告人:志飞教授, 国家杰出青年基金获得者 (北京大学)

 

时间地点:201781日,上午11点至12点, 新主楼1124房间

 

邀请人: 陆国震 教授

 

 

报告摘要:Cauchy-Kowalevski theorem is a classical local existence and uniqueness theorem for analytic partial differential equations associated with Cauchy initial value.I will present some global Cauchy-Kowalevski type theorems for the Navier-Stokes equations. These results in particular give the global well-posedness of the Navier-Stokes equations for some classes of large data.