管理员登录 / English
Fuglede's Conjecture holds in the field of $p$-adic numbers
发布时间: 2018-01-04     08:59   【返回上一页】 发布人:凡石磊


 

多复变与复几何专题报告

 

 

报告题目:Fuglede's Conjecture holds in the field of $p$-adic numbers

 

 

报告人: 凡石磊 副教授 (华中师范大学)

 

 

时间地点:2018111日下午3:00-4:00,后主楼 1223

 

 

邀请人:汪志威

 

 

摘要:

We proved that Fuglede's conjecture concerning spectral sets and tilings holds in the field of $p$-adic numbers, i.e. a Borel set of positive and finite Haar measure is a spectral set if and only if it tiles the space by translation, although the conjecture remains open in the field of real numbers. Our study is based on the investigation of a convolution equation of the form $f * /mu =1$, where $/mu$ is a measure supported by a discrete set and f is a non-negative integrable function. I. J. Schoenberg's result concerning the $p^n$-th roots of unity plays a crucial role.It is the joint works with Ai-Hua FAN, Lingmin LIAO and Ruxi SHI.