管理员登录 / English
Berge-Fulkerson conjecture for graphs with special eight circuits
发布时间: 2018-12-10     18:24   【返回上一页】 发布人:郝荣霞


图论与组合优化学术报告

 

 

报告题目:Berge-Fulkerson conjecture for graphs with special eight circuits

 

报告人:郝荣霞教授(北京交通大学)

 

时间地点: 2018年12月14日15:00-16:00, 后主楼1129

 

邀请人:徐敏

 

报告摘要:It is conjectured by Berge and Fulkerson that every bridgeless cubic graph has six perfect matchings such that each edge is contained in exactly two of them. A cubic graph G is Berge-Fulkerson colorable if 2G is 6-edge-colorable. It is an equivalent description of the Berge-Fulkerson conjecture. 

In this talk, we will give the following result and its generalizations. Let G be a permutation graph consisting of a 2-factor  and a perfect matching .  If G contains a circuit D of length 8 with edge sequence , where ,  and , then G is Berge-Fulkerson colorable.