专著:
[1] W. Yuan, W. Sickel and D. Yang, Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics 2005, Springer-Verlag, Berlin, 2010, xi+281 pp.
[2] L. Liu, J. Xiao, D. Yang and W. Yuan, Gaussian Capacity Theory, Lecture Notes in Mathematics 2225, Springer-Verlag, Berlin, 2018.
代表性论文:
[1] D. Yang and W. Yuan, A new class of function spaces connecting Triebel-Lizorkin
spaces and $Q$ spaces, J. Funct. Anal. 255(2008), 2760-2809.
[2] D. Yang and W. Yuan, New Besov-type spaces and Triebel-Lizorkin-type spaces including
$Q$ spaces, Math. Z. 265(2010), 451-480.
[3] W. Yuan, W. Sickel and D. Yang, Interpolation of Morrey-Campanato and Related Smoothness Spaces,
Sci. China Math. 58 (2015), 1835-1908.
[4] D. Yang, C. Zhuo and W. Yuan, Besov-Type Spaces with Variable Smoothness and Integrability, J. Funct. Anal. 269 (2015), 1840-1898.
[5] X. Yan, D. Yang, W. Yuan and C. Zhuo,
Variable weak Hardy spaces and their applications, J. Funct. Anal. 271 (2016), 2822-2887.
[6] D. Yang and W. Yuan,
Pointwise Characterizations of Besov and Triebel-Lizorkin Spaces in
Terms of Averages on Balls, Trans. Amer. Math. Soc. 369 (2017), 7631-7655.
[7] L. Liu, J. Xiao, D. Yang and W. Yuan, Restrictions for solutions of the heat equations with Newton-Sobolev data on metric measure spaces, Calc. Var. Partial Differential Equations 58 (2019), no. 5, Paper No. 165.
[8] A. Bonami, J. Cao, L. D. Ky, L. Liu, D. Yang and W. Yuan, Multiplication between Hardy spaces and their dual spaces, J. Math. Pures Appl. (9) 131 (2019), 130-170.
[9] D. Yang, W. Yuan and Y. Zhang, Bilinear decomposition and divergence-curl estimates on products
related to local Hardy spaces and their dual spaces, J. Funct. Anal. 280 (2021), no. 2, 108796.
[10] Z. He, F. Wang, D. Yang and W. Yuan, Wavelet characterization of Besov and Triebel--Lizorkin spaces on spaces of homogeneous
type and its pplications, Appl. Comput. Harmon. Anal. 54 (2021), 176-226.
[11] L. Liu, S. Wu, J. Xiao and W. Yuan, The logarithmic Sobolev capacity, Adv. Math. 392 (2021), Paper No. 107993.
[12] F. Dai, X. Lin, D. Yang, W. Yuan and Y. Zhang, Poincar\'e inequality meets Brezis-Van Schaftingen-Yung formula on metric measure spaces, J. Funct. Anal. 283 (2022), no. 9, Paper No. 109645.
[13] R. Alvarado, D. Yang and W. Yuan, A Measure Characterization of Embedding and Extension Domains for Sobolev, Triebel--Lizorkin, and Besov Spaces on Spaces of Homogeneous Type,
J. Funct. Anal. 283 (2022), no. 12, Paper No. 109687, 71 pp.
[14] F. Dai, X. Lin, D. Yang, W. Yuan and Y. Zhang, Brezis--Van Schaftingen--Yung formulae in ball Banach function spaces with applications to fractional Sobolev and Gagliardo--Nirenberg inequalities, Calc. Var. Partial Differential Equations 62 (2023), no. 2, Paper No. 56, 73 pp.
[15] C. Zhu, D. Yang and W. Yuan, Generalized Brezis--Seeger--Van Schaftingen--Yung formulae and their applications in ball Banach Sobolev spaces, Calc. Var. Partial Differential Equations 62 (2023), Paper No. 234, 76 pp.
[16] Y. Li, W. Sickel, D. Yang and W. Yuan, Characterizations of Pointwise Multipliers of Besov Spaces in Endpoint Cases with an Application to the Duality Principle, J. Funct. Anal. 286 (2024), no. 1, Paper No. 110198.
[17] Z. Pan, D. Yang, W. Yuan and Y. Zhang, Gagliardo Representation of Norms of Ball Quasi-Banach Function Spaces, J. Funct. Anal. 286 (2024), no. 3, Paper No. 110205, 78 pp.
[18] F. Dai, L. Grafakos, Z. Pan, D. Yang, W. Yuan and Y. Zhang, The Bourgain--Brezis--Mironescu formula on ball Banach function spaces, Math. Ann. 388 (2024), 1691-1768.