1. 深度学习中的数学理论
[2] Yongqiang Cai, Vocabulary for Universal Approximation: A Linguistic Perspective of Mapping Compositions, International Conference on Machine Learning, 2024 (Spotlight).
[1] Yongqiang Cai, Achieve the Minimum Width of Neural Networks for Universal Approximation, International Conference on Learning Representations, 2023.
2. 机器学习的算法和应用
[3] Yongqiang Cai*, Qianxiao Li, Zuowei Shen, Optimization in Machine Learning: a Distribution-Space Approach, Communications on Applied Mathematics and Computation, 6, 1217-1240, 2024.
[2] Daniil Bash,Yongqiang Cai,Vijila Chellappan, et al., Multi-Fidelity High-Throughput Optimization of Electrical Conductivity in P3HT-CNT Composites, Advanced Functional Materials, 31.36(2021):2102606.
[1] Yongqiang Cai, Qianxiao Li, Zuowei Shen, A Quantitative Analysis of the Effect of Batch Normalization on Gradient Descent, International Conference on Machine Learning, 2019.
3. 高分子自组装双层膜
[6] Xiaoyuan Wang, Shixin Xu, Fredric S. Cohen, Jiwei Zhang*, Yongqiang Cai*, Mimicking Effects of Cholesterol in Lipid Bilayer Membranes by Self-Assembled Amphiphilic Block Copolymers, Soft Matter, 2023, 19(29): 5487-5501.
[5] Yongqiang Cai*, Tilt Modulus of Bilayer Membranes Self-Assembled from Rod-Coil Diblock Copolymers, Langmuir, 2022.
[4] Xiaoyuan Wang, Sirui Li, Yongqiang Cai*, Analytical Calculation of the Elastic Moduli of Self-Assembled Liquid-Crystalline Bilayer Membranes, J. Phys. Chem. B, 2021, 125, 20, 5309–5320.
[3] Yongqiang Cai*, Sirui Li, An-Chang Shi, Elastic properties of self-assembled bilayer membranes: Analytic expressions via asymptotic expansion, Journal of Chemical Physics, 152.24 (2020): 244121.
[2] Yongqiang Cai, Pingwen Zhang*, An-Chang Shi*, Elastic Properties of Liquid Crystalline Bilayers Self-Assembled from Semiflexible-Flexible Diblock Copolymers, Soft Matter, 15.45 (2019): 9215-9223.
[1] Yongqiang Cai, Pingwen Zhang*, An-Chang Shi*, Liquid Crystalline Bilayers Self-Assembled from Rod-Coil Diblock Copolymers, Soft Matter, 13.26 (2017): 4607-4615.