Research papers
19.Dalang, R.C., Nualart, D. and Pu, F.:Sharp upper bounds on hitting probabilities for the solution to the stochastic heat equation on the line. arXiv:2508.11859 (2025)
18. Gu, Y. and Pu, F.: Spatial decorrelation of KPZ from narrow wedge. arXiv:2506.23065 (2025)
17. Bhattacharjee, S. and Pu, F.: Macroscopic Hausdorff dimension of the level sets of the Airy processes. arXiv:2501.00772 (2025)
16. Pu, F.: Ergodicity, CLT and asymptotic maximum of the Airy1 process. Bernoulli 31 (2025), no. 4, 2624–2648
15.Pu, F.:Lower bound on spatial asymptotic of parabolic Anderson model with narrow wedge initial condition. Stoch. Partial Differ. Equ. Anal. Comput. 13 (2025), no. 2, 1034–1050.
14. Dalang, R. C. and Pu, F.:Hitting with probability one for stochastic heat equations with additive noise. J. Theoret. Probab. 37 (2024), no. 4, 3479–3495
13. Li, Z. and Pu, F.: Gaussian fluctuation for spatial average of super-Brownian motion. Stoch. Anal. Appl. 41, no.4, 752--769 (2023)
12. Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F.: Central limit theorems for spatial averages of the stochastic heat equation via Malliavin-Stein's method. Stoch PDE: Anal Comp 11, no.1, 122--176 (2023)
11. Nourdin, I. and Pu, F.: Gaussian fluctuation for Gaussian Wishart matrices of overall correlation. Statist. Probab. Lett. Paper No. 109269, 11 pp. (2022)
10. Pu, F.: Gaussian fluctuation for spatial average of parabolic Anderson model with Neumann/Dirichlet boundary conditions. Tran. Amer. Math. Soc. 375, no. 4, 2481--2509 (2022)
9. Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F: Spatial ergodicity and central limit theorem for parabolic Anderson model with delta initial condition. J. Funct. Anal. 282, no. 2, Paper No. 109290, 35 pp. (2022)
8. Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F: Central limit theorems for parabolic stochastic partial differential equations. Ann. Inst. H. Poincar\'e Probab. Statist. 58, No.2, 1052--1077 (2022)
7. Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F: Spatial ergodicity for SPDEs via Poincar\'e-type inequalities. Electron. J. Probab. 26, 1--37 (2021)
6. Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F: A CLT for dependent random variables, with applications to infinitely-many interacting diffusion processes. Proc. of the A.M.S. 149, no. 12, 5367--5384 (2021)
5. Khoshnevisan, D., Nualart, D. and Pu, F.: Spatial stationarity, ergodicity and CLT for parabolic Anderson model with delta initial condition in dimension $d \geq 1$. SIAM J. Math. Anal. 53(2), 2084-2133 (2021)
4. Dalang, R.C. and Pu, F.: Optimal lower bounds on hitting probabilities for stochastic heat equations in spatial dimension $k \geq 1$. Electron. J. Probab. 25, no. 40, 31pp (2020)
3. Dalang, R.C. and Pu, F.: Optimal lower bounds on hitting probabilities for non-linear systems of stochastic fractional heat equations. Stochastic Process. Appl. 131 , 359--393 (2021)
2. Dalang, R.C. and Pu, F.: On the density of the supremum of the solution to the linear stochastic heat equation. Stoch PDE: Anal Comp. 8, 461--508 (2020)
1. Li, Z.H. and Pu, F. : Strong solutions of jump-type stochastic equations. Electron. Commun. Probab. 17, no. 33, 13pp (2012)