姓名:唐仲伟 |
|
职称:教授 |
所在部门(教研室):偏微分方程 |
研究方向:偏微分方程,非线性分析 |
办公室:后主楼1201 |
办公室电话:010-58807691 |
电子邮件:tangzw@bnu.edu.cn |
个人简介
唐仲伟,男,1976年7月生。博士生导师。2004年7月从中国科学院数学与系统科学院获得博士毕业, 并随后在北京师范大学数学科学学院工作。 其中2007年9月30-2009年10月1日:作为洪堡学者在德国吉森大学访问两年。在本科生教学方面:主要承担数学科学学院《数学分析》的教学工作。在研究生教学方面,承担《偏微分方程》及《临界点理论及应用》的教学工作;在科研方面主要从事非线性分析及在偏微分方程中的应用的研究工作。
学习经历
1994.9-1998.7 西北师范大学数学系 本科;
1998.9-2001.7 西北师范大学数学系 硕士;
2001.9-2004.7 中国科学院数学与系统科学研究院 博士。
工作经历
自2004年7月起,在北京师范大学数学科学学院工作。
2004年7月-2010年9月,任北京师范大学数学科学学院 讲师。
2010年9月-2016年9月,任北京师范大学数学科学学院 副教授。
2016年9月-至今,任北京师范大学数学科学学院 教授。
论文发表
[1]. Tang, Zhongwei; Wang, Heming; Zhou, Ning, Existence and density results of conformal metrics with prescribed higher order Q-curvature on Sn,Differential Geom. Appl. 96 (2024), Paper No. 102172.
[2]. Tang, Zhongwei; Zhang, Bingwei; Zhang, Yichen, Existence of a minimizer for the Bianchi-Egnell inequality on the Heisenberg group,J. Geom. Anal. 34 (2024), no. 5, Paper No. 148, 26 pp.
[3]. Li, Yan; Tang, Zhongwei; Wang, Heming; Zhou, Ning, Unified results for existence and compactness in the prescribed fractional Q-curvature problem,NoDEA Nonlinear Differential Equations Appl. 31 (2024), no. 3, Paper No. 38, 28 pp.
[4]. Luo, Xiao; Tang, Zhongwei; Wang, Lushun, Infinitely many solutions for nonlinear fourth-order Schrödinger equations with mixed dispersion,Appl. Anal. 103 (2024), no. 5, 898–926.
[5]. Li, Benniao; Long, Wei; Tang, Zhongwei, Lazer-McKenna conjecture for fractional problems involving critical growth, J. Differential Equations 388 (2024), 112–150.
[6]. Tang, Zhongwei; Zhou, Ning, On the prescribed fractional Q-curvatures problem on Sn under pinching conditions,Differential Geom. Appl. 93 (2024), Paper No. 102103.
[7]. Luo, Peng; Tang, Zhongwei; Xie, Huafei,Qualitative analysis to an eigenvalue problem of the Hénon equation,J. Funct. Anal. 286 (2024), no. 2, Paper No. 110206, 26 pp.
[8]. Tang, Zhongwei; Wang, Heming; Zhou, Ning,On a Nirenberg-type problem involving the half Laplacian: density and multiplicity of solutions, Ann. Mat. Pura Appl. (4) 202 (2023), no. 5, 2145–2194.
[9]. Bao, Jiguang; Qiang, Jiechen; Tang, Zhongwei; Wang, Cong, Interior estimates of derivatives and a Liouville type theorem for parabolic k-Hessian equations, Commun. Pure Appl. Anal. 22 (2023), no. 8, 2466–2480.
[10]. Niu, Miaomiao; Tang, Zhongwei; Zhou, Ning Compactness of Solutions to Higher-Order Elliptic Equations, Int. Math. Res. Not. IMRN (2023), no. 10, 8703-8754.
[11]. Tang, Zhongwei; Wang, Lushun; Xie, Huafei Multiple mixed interior and boundary peaks syn- chronized solutions for nonlinear coupled elliptic systems,J. Math. Phys. 64 (2023), no. 5, Paper No. 051508, 29 pp.
[12]. He, Qihan; Lv, Zongyan; Tang, Zhongwei The existence of normalized solutions to the Kirchhoff equation with potential and Sobolev critical nonlinearities,J. Geom. Anal. 33 (2023), no. 7, Paper No. 236, 30 pp.
[13]. Li, Yan; Tang, Zhongwei; Zhou, Ning On a fractional Nirenberg problem involving the square root of the Laplacian on S3,J. Geom. Anal. 33 (2023), no. 7, Paper No. 227, 52 pp.
[14]. Ghimenti, Marco G.; Liu, Min; Tang, Zhongwei Multiple solutions for a fractional Choquard problem with slightly subcritical exponents on bounded domains,NoDEA Nonlinear Differential Equations Appl. 30 (2023), no. 2, Paper No. 28, 27 pp.
[15]. Li, Yan; Tang, Zhongwei; Zhou, Ning Compactness and existence results of the prescribing frac- tional Q-curvature problem on Sn,Calc. Var. Partial Differential Equations 62 (2023), no. 2, Paper No. 58, 43 pp.
[16]. Tang, Zhongwei; Zhang, Chengxiang; Zhang, Luyu; Zhou, Luyan Normalized multibump solu- tions to nonlinear Schrödinger equations with steep potential well,Nonlinearity 35 (2022), no. 8, 4624-4658.
[17]. Dong, Xiaojing; Tang, Zhongwei Nonrelativistic limit of ground state solutions for nonlinear Dirac-Klein-Gordon systems,Minimax Theory Appl. 7 (2022), no. 2, 253-276.
[18]. Li, Benniao; Long, Wei; Tang, Zhongwei; Yang, Jinge Uniqueness of positive bound states with multiple bumps for Schrödinger-Poisson system, Calc. Var. Partial Differential Equations 60 (2021), no. 6, Paper No. 240, 28 pp.
[19]. Chen, Yongpeng; Tang, Zhongwei Multiplicity and concentration results for a class of singularly perturbed critical quasilinear Schrödinger equation,Topol. Methods Nonlinear Anal. 57 (2021), no. 1, 135-171.
[20]. Tang, Zhongwei; Xiong, Jingang; Zhou, Ning Sharp Sobolev inequalities involving boundary terms revisited,Calc. Var. Partial Differential Equations 60 (2021), no. 5, Paper No. 160, 26 pp.
[21]. Tang, Zhongwei; Xie, Huafei Multi-scale spike solutions for nonlinear coupled elliptic systems with critical frequency,NoDEA Nonlinear Differential Equations Appl. 28 (2021), no. 3, Paper No. 25, 31 pp.
[22]. Long, Wei; Tang, Zhongwei; Yang, Sudan Many synchronized vector solutions for a Bose- Einstein system,Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 6, 3293-3320.
[23]. 14.Liu, Min; Tang, Zhongwei; Wang, Chunhua Infinitely many solutions for a critical Grushin-type problem via local Pohozaev identities,Ann. Mat. Pura Appl. (4) 199 (2020), no. 5, 1737-1762.
[24]. Chen, Yongpeng; Guo, Yuxia; Tang, Zhongwei Asymptotical behavior of ground state solutions for critical quasilinear Schrödinger equation,Front. Math. China 15 (2020), no. 1, 21-46.
[25]. Liu, Min; Tang, Zhongwei Pseudoindex theory and Nehari method for a fractional Choquard equation,Pacific J. Math. 304 (2020), no. 1, 103-142.
[26]. Tang, Zhongwei; Xie, Huafei Multi-spikes solutions for a system of coupled elliptic equations with quadratic nonlinearity, Commun. Pure Appl. Anal. 19 (2020), no. 1, 311-328.
[27]. Chen, Yongpeng; Guo, Yuxia; Tang, Zhongwei Concentration of ground state solutions for quasi- linear Schrödinger systems with critical exponents, Commun. Pure Appl. Anal. 18 (2019), no. 5, 2693-2715.
[28]. Liu, Min; Tang, Zhongwei Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory Discrete Contin. Dyn. Syst. 39 (2019), no. 6, 3365-3398.
[29]. Liu, Min; Tang, Zhongwei Multiplicity and concentration of solutions for a fractional Schrödinger equation via Nehari method and pseudo-index theory,J. Math. Phys. 60 (2019), no. 5, 053502, 25 pp.
[30]. Tang, Zhongwei; Wang, Lushun Optimal number of solutions for nonlinear coupled Schrödinger systems, part I: synchronized case, J. Differential Equations 266 (2019), no. 6, 3601-3653.
[31]. Niu, Miaomiao; Tang, Zhongwei; Wang, Lushun Solutions for conformally invariant fractional Laplacian equations with multi-bumps centered in lattices,J. Differential Equations 266 (2019), no. 4, 1756-1831.
[32]. Jiao, Yujuan; Tang, Zhongwei On the least energy solutions for semilinear Schrödinger equa- tion with electromagnetic fields involving critical growth and indefinite potentials,Appl. Anal. 97 (2018), no. 12, 2157-2169.
[33]. Niu, Miaomiao; Tang, Zhongwei; Wang, Lushun Least energy solutions for indefinite biharmonic problems via modified Nehari-Pankov manifold,Commun. Contemp. Math. 20 (2018), no. 4, 1750047, 35 pp.
[34]. Tang, Zhongwei; Wang, Lushun Segregated vector solutions with multi-scale spikes for nonlinear coupled elliptic systems,J. Math. Anal. Appl. 464 (2018), no. 1, 1-31.
[35]. Lucia, Marcello; Tang, Zhongwei Multi-bump bound states for a Schrödinger system via Lyapunov- Schmidt reduction,NoDEA Nonlinear Differential Equations Appl. 24 (2017), no. 6, Paper No. 65,22 pp.
[36]. Liao, Liming; Ji, Guanghua; Tang, Zhongwei; Zhang, Hui Spike-layer simulation for steady-state coupled Schrödinger equations,East Asian J. Appl. Math. 7 (2017), no. 3, 566-582.
[37]. Guo, Yuxia; Nie, Jianjun; Niu, Miaomiao; Tang, Zhongwei Local uniqueness and periodicity for the prescribed scalar curvature problem of fractional operator in RN,Calc. Var. Partial Differential Equations 56 (2017), no. 4, Paper No. 118, 41 pp.
[38]. Tang, Zhongwei; Wang, Lushun Solutions for the problems involving fractional Laplacian and indefinite potentials, Adv. Nonlinear Stud. 17 (2017), no. 3, 551-579.
[39]. Niu, Miaomiao; Tang, Zhongwei Least energy solutions for nonlinear Schrödinger equation in- volving the fractional Laplacian and critical growth,Discrete Contin. Dyn. Syst. 37 (2017), no. 7, 3963-3987.
[40]. Niu, MiaoMiao; Tang, Zhongwei Least energy solutions of nonlinear Schrödinger equations in- volving the fractional Laplacian and potential wells,Sci. China Math. 60 (2017), no. 2, 261-276.
[41]. Tang, Zhongwei; Wang, Lushun Number of synchronized and segregated interior spike solutions for nonlinear coupled elliptic systems, J. Math. Anal. Appl. 448 (2017), no. 2, 1079-1119.
[42]. Niu, Miaomiao; Tang, Zhongwei Least energy solutions for nonlinear Schrödinger equations in- volving the half Laplacian and critical growth, J. Fixed Point Theory Appl. 18 (2016), no. 2, 367-395.
[43]. Niu, Miaomiao; Tang, Zhongwei Least energy solutions of nonlinear Schrödinger equations in- volving the half Laplacian and potential wells, Commun. Pure Appl. Anal. 15 (2016), no. 4, 1215-1231.
[44]. Tang, Zhongwei; Wang, Yanli Least energy solutions for semilinear Schrödinger equation with electromagnetic fields and critical growth, Sci. China Math. 58 (2015), no. 11, 2317-2328.
[45]. Guo, Yuxia; Tang, Zhongwei Sign changing bump solutions for Schrödinger equations involving critical growth and indefinite potential wells, J. Differential Equations 259 (2015), no. 11, 6038- 6071.
[46]. Tang, Zhongwei; Wang, Yanli Least energy solutions for semilinear Schrödinger systems with electromagnetic fields and critical growth, Appl. Anal. 94 (2015), no. 9, 1821-1837.
[47]. Guo, Yuxia; Tang, Zhongwei Multi-bump solutions for Schrödinger equation involving critical growth and potential wells. Discrete Contin. Dyn. Syst. 35 (2015), no. 8, 3393-3415.
[48]. Guo, Yuxia; Tang, Zhongwei ; Multi-bump bound state solutions for the quasilinear Schrödinger equation with critical frequency.Pacific J. Math. 270 (2014), no. 1, 49-77.
[49]. Tang, Zhongwei Segregated Peak Solutions of Coupled Schrödinger Systems with Neumann Boundary Conditions, Discrete Contin. Dyn. Syst. 34 (2014), 5299-5323.
[50]. Tang, Zhongwei Multi-peak solutions to coupled Schrödinger systems with Neumann boundary conditions. J. Math. Anal. Appl. 409 (2014), no. 2, 684-704.
[51]. Tang, Zhongwei Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Commun. Pure Appl. Anal. 13 (2014), no. 1, 237-248.
[52]. Fu, Shengmao; Jiao, Yujuan; Tang, Zhongwei Multi-bump bound states for a nonlinear Schrödinger system with electromagnetic fields. J. Math. Anal. Appl. 404 (2013), no. 2, 239-259.
[53]. Bartsch, Thomas; Tang, Zhongwei Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete Contin. Dyn. Syst. 33 (2013), no. 1, 7-26.
[54]. Guo, Yuxia; Tang, Zhongwei Multibump bound states for quasilinear Schrödinger systems with critical frequency. J. Fixed Point Theory Appl. 12 (2012), no. 1-2, 135-174.
[55]. Guo, Yuxia; Tang, Zhongwei Ground state solutions for the quasilinear Schrödinger equation. Nonlinear Anal. 75 (2012), no. 6, 3235-3248.
[56]. Lucia, Marcello; Tang, Zhongwei Multi-bump bound states for a system of nonlinear Schrödinger equations. J. Differential Equations 252 (2012), no. 5, 3630-3657.
[57]. Guo, Yuxia; Tang, Zhongwei Ground state solutions for quasilinear Schrödinger systems. J. Math. Anal. Appl. 389 (2012), no. 1, 322-339.
[58]. Tang, Zhongwei Spike-layer solutions to singularly perturbed semilinear systems of coupled Schrödinger equations. J. Math. Anal. Appl. 377 (2011), no. 1, 336-352.
[59]. Tang, Zhongwei Multiplicity of standing wave solutions of nonlinear Schrödinger equations with electromagnetic fields. Z. Angew. Math. Phys. 59 (2008), no. 5, 810-833.
[60]. Tang, Zhongwei Multi-bump bound states of nonlinear Schrödinger equations with electromag- netic fields and critical frequency. J. Differential Equations 245 (2008), no. 10, 2723-2748.
[61]. Tang, Zhongwei Infinitely many radial solutions to elliptic problems with critical Sobolev and Hardy terms. Sci. China Ser. A 51 (2008), no. 9, 1609-1618.
[62]. Tang, Zhongwei On the least energy solutions of nonlinear Schrödinger equations with electro- magnetic fields. Comput. Math. Appl. 54 (2007), no. 5, 627-637.
[63]. Tang, Zhongwei Existence and asymptotic behavior of the solutions for a nonlinear elliptic equa- tion arising in astrophysics. Acta Math. Sci. Ser. B Engl. Ed. 26 (2006), no. 2, 229-245.
[64]. Tang, Zhongwei Sign-changing solutions of critical growth nonlinear elliptic systems. Nonlinear Anal. 64 (2006), no. 11, 2480-2491.
[65]. Cao, Daomin; Tang, Zhongwei Existence and uniqueness of multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields. J. Differential Equations 222 (2006), no. 2, 381-424.
[66]. Tang, Zhongwei and Xiao, Li, 2004, Existence of explosive solutions for a class of quasilinear elliptic equations, Acta Mathematic Appliticae 27(2004), no. 2 274-280.(Chinese).
[67]. Cao, Daomin; Tang, Zhongwei Solutions with prescribed number of nodes to superlinear elliptic systems. Nonlinear Anal. 55 (2003), no. 6, 707-722.
[68]. Xiao, Li and Tang, Zhongwei, Existence of explosive solutions for a class of semilinear ellip- tic equations,Journal of Northwest Normal University (Science edition) Vol 37 (2001) no.4 5-12.(Chinese).
[69]. Xiao, Li and Tang, Zhongwei,Existence of explosive solutions for a class of linear elliptic prob- lems,Journal of Northwest Normal University (Science edition) Vol 37(2001) no. 3 1-5.(Chinese).
[70]. Tang, Zhongwei and Xiao, Li, Asymptotic behavior of for a class of reactive diffusion systems.Journal of Northwest Normal University (Science edition) Vol 37(2001) no. 1 5-12.(Chinese).
[71]. Tang, Zhongwei, Xiao, Li and Fu, Shenmao, Asymptotic behavior of a class of two species pe- riodic competition diffusion systems with depositing. Journal of Gansu Science Vol.12(2000), no.4, 5-10.(Chinese)