题目:Local well-posedness for Prandtl boundary layer system I、II
主讲人:李维喜 教授(武汉大学数学与统计学院)
时间:2023年4月21日、24日 上午10:00--12:00
地点:后主楼1124
摘要:This minicourse aims to review the cancellation mechanism used to investigate the well-posedness theory of the Prandtl equation in Sobolev space or Gevrey class. In the first part we will introduce the Sobolev well-posedenss, established independently by Alexandre-Wang -Xu-Yang and Masmoudi-Wong, for the 2D Prandtl equation with monotonicity condition. The second part will focus on the Gevrey class solutions to Prandtl equations without any structural assumption, obtained by Dietert-Gérard-Varet and L.-Masmoudi-Yang for 2D and 3D case, respectively.
个人简介:李维喜,武汉大学数学与统计学院教授、博士生导师,主要从事偏微分方程和数学物理方程的研究,特别是在流体力学方程的边界层理论,退化椭圆方程的正则性,以及谱分析等方面做出了一系列工作,研究成果发表在Communications on Pure and Applied Mathematics、Journal of the European Mathematical Society、Advances in Mathematics等期刊上。曾主持国家优秀青年基金、霍英东教育基金、国际(地区)合作与交流项目等国家基金项目。