The relaxation schemes for multi-dimensional entropy dissipative systems
数学专题报告
报告题目(Title):The relaxation schemes for multi-dimensional entropy dissipative systems
报告人(Speaker):陈拓炜 (北京应用物理与计算数学研究所)
地点(Place):后主楼1124
时间(Time):2023年6月22日(周四), 16:00-17:00
邀请人(Inviter):潘亮
报告摘要
In this paper, we introduce a hyperbolic model for a class of entropy dissipative systems via relaxation approach. We develop numerical schemes for the resulting hyperbolic relaxation system by using classical finite-volume (FV) solvers used in the community of hyperbolic conservation laws. Moreover, for the relaxation system of scalar entropy dissipative equation, we discuss i) the asymptotic preserving (AP) property of the semi-discrete scheme; ii) the unified preserving (UP) property of the fully discrete scheme in the low viscosity regime; iii) dissipation property. Further, we extend the idea to the compressible Navier-Stokes equations.
主讲人简介
陈拓炜,博士毕业于复旦大学,现于北京应用物理与计算数学研究所从事博士后研究工作,研究方向为流体力学中的偏微分方程组和计算流体力学,在偏微分方程理论领域的知名国际期刊上发表SCI论文多篇。