$q$-ary cyclic constant-weight codes
报告题目(Title):$q$-ary cyclic constant-weight codes
报告人(Speaker):常彦勋 教授 (北京交通大学)
地点(Place):腾讯会议 746 166 009
时间(Time):2020年6月23日 15:00-16:00
邀请人(Inviter):王恺顺
报告摘要
A cyclic $(n,d,w)_q$ code is a $q$-ary cyclic code of length $n$, minimum Hamming distance $d$ and weight $w$. Let $CA_q(n,d,w)$ denote the largest possible number of codewords in a cyclic $(n,d,w)_q$ code. A cyclic $(n,d,w)_q$ code is said to be {\it optimal} if it contains $CA_q(n,d,w)$ codewords. In this talk we give several constructions of optimal cyclic $(n,d,w)_q$ code by difference methods. We also mention that the exact value of $CA_q(n,d,w)$ are determined for some specific parameters.