Hitting probability of Gaussian random fields and collision of eigenvalues of random matrices
报告题目(Title):Hitting probability of Gaussian random fields and collision of eigenvalues of random matrices
报告人(Speaker):宋健 教授 (山东大学)
地点(Place):后主楼 1220
时间(Time):2021年10月15日 (周五) 下午4:00-5:00
邀请人(Inviter):何辉
报告摘要
Let $X =\{X(t), t\in R^N\}$ be a centered Gaussian random field with values in $R^d$ and let $F\in R^d\setminus\{0\}$ be a Borel set. We provide a sufficient condition for $F$ to be polar for $X$, i.e., $P(X(t) \in F \text{ for some }t\in R^N) = 0.$ By applying this condition, we solve a problem on the existence of collisions of the eigenvalues of random matrices with Gaussian random field entries in critical dimension that was left open in [Jaramillo-Nualart (2020)] and [Song-Xiao-Yuan (2021)]. This talk is based on joint works with Cheuk-Yin Lee, Yimin Xiao, and Wangjun Yuan.