the Poisson Hail Model, Stability, and Power Law Conditions
数学专题报告
报告题目(Title):the Poisson Hail Model, Stability, and Power Law Conditions
报告人(Speaker):王喆(瑞士洛桑联邦理工大学)
地点(Place):Zoom会议号 824 3533 3668 密码 123456
时间(Time):2022 年 6月 24日(周五) 16:00--17:00
邀请人(Inviter):蒲飞
报告摘要
The Poisson hail model is a stochastic system of interacting queues in $\mathbb{Z}^d$. Points in $\mathbb{Z}^d$
represent servers, which receive jobs according to i.i.d. marked Poisson processes. Each job has random spatial and temporal sizes $(R, \tau)$. Denote $W(x, t)$ the workload of the system at a space-time point $(x,t)$. The "stability" corresponds to the tightness of the family $(W(\mathbf{0}, t))_{t\geq 0}$. In this talk, we will discuss power law conditions on the sizes $(R, \tau)$ that guarantee "stability." In particular, we will deal with the case of infinite speed of propagation. This is joint work with Thomas Mountford.
主讲人简介
王喆博士是瑞士洛桑联邦理工大学数学系博士后,2018年博士毕业于纽约大学柯朗数学研究所,师从Abel奖得主Srinivasa R. S. Varadhan。王喆博士研究方向是交互粒子系统,在Comm. Pure Appl. Math.等国际知名期刊发表多篇高水平学术论文。