Carlson-Griffiths theory on complete Kähler manifolds with non-negative Ricci curvature
数学专题报告
报告题目(Title):Carlson-Griffiths theory on complete Kähler manifolds with non-negative Ricci curvature
报告人(Speaker):董显晶 教授 (曲阜师范大学)
地点(Place):后主楼1223
时间(Time):2023年5月24日(周三), 10:30-11:30
邀请人(Inviter):汪志威
报告摘要
In the past, most results concerning the value distribution theory of holomorphic or meromorphic mappings were based on complex manifolds which admit a complete Kähler metric of non-positive sectional curvature, such as complex Euclidean spaces, complex balls and open Riemann surfaces, etc.. However, we don’t seem to know much about this theory when domain manifolds are not non-positively curved. We know that the Carlson-Griffiths theory is important part of Nevanlinna theory. In this talk, I will introduce the Carlson-Griffiths theory of meromorphic mappings from a complete Kähler manifold with non-negative Ricci curvature into a complex projective manifold.
主讲人简介
董显晶,曲阜师范大学数学科学学院教授,研究方向为多复变与复几何。在《J. Inst. Math. Jussieu》、《Asian J. Math.》、《Pacific J. Math.》、《Sci. China Math.》等国内外期刊上发表若干篇学术论文。