Sharp stability threshold for the 2D shear flows in the critical space
数学专题报告
报告题目(Title):Sharp stability threshold for the 2D shear flows in the critical space
报告人(Speaker):赵威任 助理教授 (New York University Abu Dhabi)
地点(Place):Zoom ID:838 993 28728, 密码:123456, Zoom Link: https://us06web.zoom.us/j/83899328728
时间(Time):2023 年 05 月 31 日(周三), 16:00-17:00
邀请人(Inviter):薛留堂
报告摘要
In this talk, I will discuss a recent result about the asymptotic stability of a class of monotone shear flows for the two-dimensional incompressible free Navier-Stokes equation (without forcing) with small viscosity $\nu$. We obtain the sharp stability threshold $\nu^{1/2}$ for perturbations in the critical space $H^{log}_x L^2_y$. We also prove the enhanced dissipation and inviscid damping. In the proof, we construct a time-dependent wave operator corresponding to the Rayleigh operator, which could be useful in future studies. This is a joint work with Hui Li.
主讲人简介
赵威任博士,现为纽约大学阿布扎比(Abu Dhabi)分校的助理教授。主要方向是调和分析及其在流体力学方程中的应用,已在CPAM, ARMA, JMPA, Adv. Math., Mem. Amer. Math. Soc.等国际著名数学期刊发表多篇论文。