Convergence of numerical solutions for the compressible Navier-Stokes system
数学专题报告
报告题目(Title):Convergence of numerical solutions for the compressible Navier-Stokes system
报告人(Speaker):佘邦伟 特聘研究员(首都师范大学)
地点(Place):后主楼1220
时间(Time):2023年3月4日(周六), 10:45-11:45
邀请人(Inviter):潘亮
报告摘要
In this talk we discuss the convergence of suitable numerical schemes for the compressible Navier-Stokes system. First, we introduce the concept of consistent approximation representing the (energy/entropy) stability and consistency of suitable numerical solutions. Using the a priori estimates given by the stability we pass to the limit of the numerical parameters and obtain a dissipative weak solution. Finally, we show that the dissipative weak solution coincide with the strong solution as long as the latter exists. It means that any numerical solution that falls in to the class of consistent approximation convergences to the strong solution.
主讲人简介
佘邦伟,现为首都师范大学特聘研究员。博士毕业美茵茨大学,其主要研究方向为流体力学偏微分方程组的数值分析,在Numer. Math.、IMA J Numer. Anal.、SIAM J Numer. Anal.、Math. Comput.、J Comput. Phys.、Multi. Model Simul.等计算数学领域的知名期刊发表多篇学术论文,并出版Springer专著一部。