Unconditionally stable numerical methods for Cahn-Hilliard-Navier-Stokes-Darcy system with different densities and viscosities
数学专题报告
报告题目(Title):Unconditionally stable numerical methods for Cahn-Hilliard-Navier-Stokes-Darcy system with different densities and viscosities
报告人(Speaker):何晓明 (Missouri University of Science and Technology)
地点(Place):后主楼1225
时间(Time):2023年7月10日(周一), 15:30-16:30
邀请人(Inviter):张争茹
报告摘要
In this presentation, we consider the numerical modeling and simulation via the phase field approach for coupled two-phase free flow and two-phase porous media flow of different densities and viscosities. The model consists of the Cahn-Hilliard-Navier-Stokes equations in the free flow region and the Cahn-Hilliard-Darcy eauations in porous media that are couped by several domain interface conditions. lt is showed that the coupled model satisfies an energy law. Then we first propose a coupled unconditionally stable finite element method for solving this model and analyze the energy stability for this method. Furthermore, based on the ideas of pressure stabilization and artificial compressibility, we propose an unconditionally stable time stepping method that decouples the computation of the phase field variable, the velocity and pressure of free flow, the velocity and pressure of porous media hence significantly reduces the computational cost. The energy stability of this decoupled scheme with the finite element spatial discretization is rigorously established. We verify numerically that our schemes are convergent and energy-law preserving. Numerical experiments are also performed to illustrate the features of two-phase flows in the coupled free flow and porous media setting.