Laplace operators and their applications in complex Finsler geometry
数学专题报告
报告题目(Title):Laplace operators and their applications in complex Finsler geometry
报告人(Speaker):邱春晖 教授(厦门大学)
地点(Place):后主楼1124
时间(Time):2023年4月16日(周日), 10:00-11:00
邀请人(Inviter):汪志威
报告摘要
Laplace operators play important roles in the theory of harmonic integral and Bochner technique in differential geometry. The key to the study of harmonic integral theory and Bochner technique in complex Finsler geometry lies in defining an appropriate Laplace operator. At present, there is no unified definition of Laplace operators in complex Finsler geometry. In this talk, we give the Laplace operators and their applications in complex Finsler geometry.
主讲人简介
邱春晖,厦门大学数学科学学院教授,博士生导师,厦门市数学学会理事长,美国数学会“数学评论”评论员,德国“数学文摘”评论员。主要研究多复变函数论和复Finsler几何,在Adv. Math.,Math. Z, J. Geom. Anal. 等发表论文60多篇,主持(过)六项国家自然科学基金面上项目、五项国家自然科学基金数学“天元”基金和一项厦门大学新世纪优秀人才支持计划,多次组织多复变与复几何、Finsler几何学术会议和研究生暑期学校。