A spectrally accurate numerical method for computing the Bogoliubov-De Gennes excitations of dipolar Bose-Einstein condensates
科研大讨论系列报告
报告题目(Title):A spectrally accurate numerical method for computing the Bogoliubov-De Gennes excitations of dipolar Bose-Einstein condensates
报告人(Speaker):张勇 (天津大学应用数学中心)
地点(Place):后主楼1220
时间(Time):2023 年12月8日下午3:00-4:00
邀请人(Inviter):熊云丰
报告摘要
In this talk, we shall introduce an efficient and robust numerical method to study the elementary excitation of dipolar Bose-Einstein condensates (BEC), which is governed by the Bogoliubov-de Gennes equations (BdGEs) with nonlocal dipole-dipole interaction, around the mean field ground state. Analytical properties of the BdGEs are investigated, which could serve as benchmarks for the numerical methods. To evaluate the nonlocal interactions accurately and efficiently, we propose a new Simple Fourier Spectral Convolution method (SFSC). Then, integrating SFSC with the stan- dard Fourier spectral method for spatial discretization and Implicitly Restarted Arnoldi Methods (IRAM) for the eigenvalue problem, we derive an efficient and spectrally accurate method, named as SFSC-IRAM method, for the BdGEs. Ample numerical tests are provided to illustrate the accuracy and efficiency. Finally, we apply the new method to study systematically the excitation spectrum and Bogoliubov amplitudes around the ground state with different parameters in different spatial dimensions.
主讲人简介
张勇教授2007年本科毕业于天津大学,2012年在清华大学获得博士学位。他先后在奥地利维也纳大学的Wolfgang Pauli 研究所,法国雷恩一大和美国纽约大学克朗所从事博士后研究工作。2015年7月获得奥地利自然科学基金委支持的薛定谔基金,2018年入选国家海外高层次人才计划。研究兴趣主要是偏微分方程的数值计算和分析工作,尤其是快速算法的设计和应用。迄今发表论文30余篇,主要发表在包括SIAM Journal on Scientific Computing, SIAM Journal on Applied Mathematics, SIAM Multiscale Modeling and Simulation, Journal of Computational Physics, Mathematics of Computation, Computer Physics Communication 等计算数学顶尖杂志。