Layer potential for weighted maximal regularity estimates of elliptic homogenization
数学公众报告(120周年校庆系列第28场)
报告题目(Title):Layer potential for weighted maximal regularity estimates of elliptic homogenization
报告人(Speaker):耿俊(兰州大学)
地点(Place):腾讯会议号 534-642-994
时间(Time):2022 年 6 月 17日(周五) 16:00--17:00
邀请人(Inviter):薛庆营
报告摘要
In this paper we use the method of layer potentials to study the weighted $L^2(\partial\Omega,\omega_\sigma d\sigma)$boundary value problems in a bounded Lipschitz domain $\Omega$for a family of second order elliptic systems with rapidly oscillating periodiccoefficients, arising in the theory of homogenization.We investigate certain ranges for $\sigma$ that the power weight$$\omega_\sigma=|z|^\sigma~~for~~\sigma>1-d$$must satisfy in order for the weighted $L^2$ Dirichlet, regularity, and Neumann problems for $\mathcal{L}_\varep (u_\varep)=0$ in $\Omega$ to be solvable uniformly in $\ varep >0$
主讲人简介
耿俊,2011年获美国肯塔基大学博士学位,现任兰州大学教授、博士生导师。主要从事非光滑区域上的椭圆边值问题和均匀化理论的研究。先后主持国家自然科学基金青年基金1项,面上项目2项。在SIAM J. Math. Anal.、 Arch. Ration. Mech. Anal.、Anal. PDE、J. Differential Equations、Proc. Amer. Math. Soc.、J. Funct. Anal.、Indiana Univ. Math. J.、Adv. Math..等国内外重要期刊发表多项高质量研究成果。