A hybrid parabolic and hyperbolic equation model for a population with separate dispersal and stationary stages: well-posedness and population persistence
数学公众报告(120周年校庆系列第32场)
报告题目(Title):A hybrid parabolic and hyperbolic equation model for a population with separate dispersal and stationary stages: well-posedness and population persistence
报告人(Speaker):黄启华教授 (西南大学)
地点(Place):腾讯会议 ID:838-564-813
时间(Time):2022 年 07 月 22 日(周五) 15:00--16:00
邀请人(Inviter):黎雄
报告摘要
The life cycles of many species include separate dispersal and sedentary stages. To understand the population dynamics of such species, we develop and study a hybrid parabolic and hyperbolic equation model, in which a reaction-diffusion equation governs the random movement and settlement of dispersal individuals, while a first-order hyperbolic equation describes the growth of stationary individuals with age structure. We establish the existence and uniqueness of the solution of the model using the monotone method based on a comparison principle. We study the population persistence criteria in terms of four related measures. We numerically investigate how the interplay between population dispersal, reproduction, settlement, and habitat boundary affects the population persistence.
主讲人简介
黄启华,教授,博士研究生导师。 2011年8月在美国 University of Louisiana at Lafayette 获得应用数学博士学位。2011年8月至2016年6月在加拿大 University of Alberta 生物数学中心从事博士后研究工作,合作导师为 Mark Lewis 教授 (加拿大皇家科学院院士,Senior Canada Research Chair in Mathematical Biology)。2016年6月通过西南大学引进人才“聚贤工程”计划被特别评聘为教授,并于2016年9月到西南大学数学与统计学院工作。主要研究方向为生物数学、偏微分方程和数值分析。科研成果主要发表在应用数学、生物数学和理论生态学等领域的期刊SIAM Journal on Applied Mathematics,SIAM Journal on Applied Dynamical Systems, Journal of Mathematical Biolog, Bulletin of Mathematical Biology, Jounral of Theoreticl Biology, Theoretical Ecology等,其中2017年和2022年发表在SIAM Journal on Applied Mathematics上的论文先后在美国工业与应用数学学会的官方网站上被报道。目前正主持国家自然科学基金面上项目、重庆市留学人员回国创新支持计划重点项目各一项。