Stoker's problem for quasi-periodically forced reversible systems with multi-dimensional Liouvillean frequency
数学公众报告(120周年校庆系列第38场)
报告题目(Title):Stoker's problem for quasi-periodically forced reversible systems with multi-dimensional Liouvillean frequency
报告人(Speaker):司建国 教授
地点(Place):腾讯会议ID:852-634-110
时间(Time):2022年9月16日下午3:00-4:00
邀请人(Inviter):黎雄
报告摘要
In this talk, we develop KAM (Kolmogorov-Arnold-Moser) theorem for a class of quasi-periodically forced reversible systems with multi-dimensional Liouvillean frequency. The proof does not need the CD-bridge given by Avila, Fayad and Krikorian, which has been used in many literatures. Our results are directly applicable to Stoker's problem of quasi-periodically forced reversible harmonic oscillators with multi-dimensional Liouvillean frequency.
主讲人简介
司建国,山东大学教授,博士生导师。长期从事利用小除数理论进行迭代微分和函数方程解析解的研究以及拟周期驱动系统拟周期解的存在性研究。在Trans.Amer.Math.Soc., Nonlinearity, J. Nonlinear Science, J. Differential Equations, SIAM J. Appl.Dynamical Systems 等有重要影响的刊物发表论文一百多篇,先后主持国家自然科学基金和山东省自然科学基金多项。