Quantitative Green's function estimates for quasi-periodic Schrodinger operators and applications
数学公众报告(120周年校庆系列第91场)
报告题目(Title):Quantitative Green's function estimates for quasi-periodic Schrodinger operators and applications
报告人(Speaker):石云峰 副研究员 (四川大学)
地点(Place):腾讯会议ID:734-705-622
时间(Time):2023年4月14日(周五), 14:00-15:00
邀请人(Inviter):黎雄
报告摘要
In this talk, we introduce the quantitative Green’s function estimates for some quasi-periodic Schrodinger operators on the higher dimensional lattice. As applications, we prove the arithmetic version of Anderson localization and the finite volume version of Holder continuity of the IDS for such operators. This extends the celebrated works of Frohlich-Spencer-Wittwer and Bourgain to higher dimensions. This talk is based on joint works with Hongyi Cao and Zhifei Zhang.
主讲人简介
石云峰,四川大学特聘副研究员。主要从事遍历薛定谔算子谱理论和偏微分方程KAM理论研究,成果发表在GAFA、CMP、J. Anal. Math、JFA、JSP、JDE等期刊;主持国家自然科学基金面上项目和青年科学基金项目。