2025京师调和分析论坛(1) (2025.1.18)
会议安排
腾讯会议号:972 359 108,入会密码:111111
时间 |
报告人 |
报告题目 |
单位 |
8:00-8:55 |
宋亮 |
Some recent progress on Stein's spherical maximal operators |
中山大学 |
9:00-9:55 |
李康伟 |
On some quantitative weighted weak type inequalities |
天津大学 |
10:00-10:55 |
贺丹青 |
Pointwise convergence of cone multipliers |
复旦大学 |
本会议由以下项目支持:
北京师范大学优秀青年创新团队项目“调和分析及其在偏微分方程中的应用”
北京师范大学教育部&科技部“调和分析及其应用创新引智基地”
国家自然科学基金重点项目“相关于球平均、Chirp函数和区域上算子的函数空间公理化实变理论及其应用”
会议组委会:杨大春(本次会议组织者), 戴峰, 袁文, 张阳阳,周渊
2025年1月12日
报告信息
1. 报告人: 宋亮 (中山大学)
报告题目: Some recent progress on Stein's spherical maximal operators
报告摘要: Stein’s spherical maximal operator was introduced by Stein in 1976. Since then, it has attracted the attention of many mathematician, e.g. Stein, Bourgain, Seeger, Sogge et al. In this talk, we will discuss some recent progress on the Lp bounds and Lp-Lq bounds for Stein’s spherical maximal operators with complex order. This is a joint work with N. J.Liu, M. X. Shen and L. X. Yan.
2. 报告人: 李康伟 (天津大学)
报告题目: On some quantitative weighted weak type inequalities
报告摘要: In this talk I will discuss quantitative weighted weak type inequalities of Muckenhoupt--Wheeden type, both in the matrix and scalar settings. In particular, in the matrix setting we obtain the sharp bound for the Christ--Goldberg maximal operator in the range $p \in (1,2)$. Also, in the scalar setting, we obtain an improved bound for Calderon—Zygmund operators in the range $p\in (1,p^*)$, where $p^*$ is the root of the cubic equation $p^3-2p^2+p-1=0$.
3. 报告人: 贺丹青 (复旦大学)
报告题目: Pointwise convergence of cone multipliers
报告摘要: The cone multiplier is an interesting topic in harmonic analysis. I will present a result on the pointwise convergence of cone multipliers, as a consequence of weighted inequalities of corresponding maximal operators. This is joint workwith P. Chen, X. Li, and L. Yan.